Waste Cooking Oils (WCOs) are generated worldwide through industrial food processing and household use, posing environmental concerns upon disposal. Bentonites often showed to be effective in removing minor contaminants in vegetable oil refining. The present research focused on the processing of raw WCOs using four bentonites, two commercials and two obtained by ball milling of the latest. The different bentonites (hydrophobic and hydrophilic) were characterized before and after ball milling (BM) procedure, including an exhaustive analyses of crystal structure, morphology and surface area via x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2-physisorption technique. Optimization of BM processing in terms of milling time was achieved within 60 min. The milled powders were then tested as adsorbents for recycling WCOs with different degrees of decomposition (expressed in terms of free fatty acids, FFAs, content). Employing a design of experiments approach, the impact of five parameters (FFAs content, temperature, specific surface area, stirring, BM time) on the resulting pour point (PP), taken as a quality benchmark for recycled oil, was assessed. Quantitative multivariate statistical analysis revealed temperature's negligible role and identified the significant impact of two characteristics of the bentonite (specific superficial area and ball milling time), as well as the relevant role of the stirring during the treatment. At the end, hydrophilic bentonite resulted able to improve the PP of waste oils with a low content of free fatty acids of about 10 degrees C.
Impact of morphology of hydrophilic and hydrophobic bentonites on improving the pour point in the recycling of waste cooking oils / Mannu, Alberto; Poddighe, Matteo; Mureddu, Marzia; Castia, Simona; Mulas, Gabriele; Murgia, Fabrizio; Di Pietro, Maria Enrica; Mele, Andrea; Garroni, Sebastiano. - In: APPLIED CLAY SCIENCE. - ISSN 0169-1317. - 262:(2024). [10.1016/j.clay.2024.107607]
Impact of morphology of hydrophilic and hydrophobic bentonites on improving the pour point in the recycling of waste cooking oils
Mannu, Alberto;Poddighe, Matteo;Mureddu, Marzia;Mulas, Gabriele;Murgia, Fabrizio;Mele, Andrea;Garroni, Sebastiano
2024-01-01
Abstract
Waste Cooking Oils (WCOs) are generated worldwide through industrial food processing and household use, posing environmental concerns upon disposal. Bentonites often showed to be effective in removing minor contaminants in vegetable oil refining. The present research focused on the processing of raw WCOs using four bentonites, two commercials and two obtained by ball milling of the latest. The different bentonites (hydrophobic and hydrophilic) were characterized before and after ball milling (BM) procedure, including an exhaustive analyses of crystal structure, morphology and surface area via x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2-physisorption technique. Optimization of BM processing in terms of milling time was achieved within 60 min. The milled powders were then tested as adsorbents for recycling WCOs with different degrees of decomposition (expressed in terms of free fatty acids, FFAs, content). Employing a design of experiments approach, the impact of five parameters (FFAs content, temperature, specific surface area, stirring, BM time) on the resulting pour point (PP), taken as a quality benchmark for recycled oil, was assessed. Quantitative multivariate statistical analysis revealed temperature's negligible role and identified the significant impact of two characteristics of the bentonite (specific superficial area and ball milling time), as well as the relevant role of the stirring during the treatment. At the end, hydrophilic bentonite resulted able to improve the PP of waste oils with a low content of free fatty acids of about 10 degrees C.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.