Direct numerical simulations of the transition process from periodic to chaotic dynamics are presented for two variable Oregonator-diffusion model coupled with convection. Numerical solutions to the corresponding reaction-diffusion-convection system of equations show that natural convection can change in a qualitative way, the evolution of concentration distribution, as compared with convectionless conditions. The numerical experiments reveal distinct bifurcations as the Grashof number is increased. A transition to chaos similar to Ruelle-Takens-Newhouse scenario is observed. Numerical results are in agreement with the experiments.

Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system / Rustici, Mauro; Budroni, Marcello Antonio; Masia, Marco; Marchettini, Nadia; Volpert, Vitaly; Cresto, Pier Carlo. - 128:11(2008), pp. 1-4. [10.1063/1.2894480]

Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system

Rustici, Mauro;Budroni, Marcello Antonio;Masia, Marco;
2008-01-01

Abstract

Direct numerical simulations of the transition process from periodic to chaotic dynamics are presented for two variable Oregonator-diffusion model coupled with convection. Numerical solutions to the corresponding reaction-diffusion-convection system of equations show that natural convection can change in a qualitative way, the evolution of concentration distribution, as compared with convectionless conditions. The numerical experiments reveal distinct bifurcations as the Grashof number is increased. A transition to chaos similar to Ruelle-Takens-Newhouse scenario is observed. Numerical results are in agreement with the experiments.
2008
Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system / Rustici, Mauro; Budroni, Marcello Antonio; Masia, Marco; Marchettini, Nadia; Volpert, Vitaly; Cresto, Pier Carlo. - 128:11(2008), pp. 1-4. [10.1063/1.2894480]
File in questo prodotto:
File Dimensione Formato  
Budroni_M_Articolo_2008_Ruelle.pdf

accesso aperto

Tipologia: Versione editoriale (versione finale pubblicata)
Licenza: Non specificato
Dimensione 192.71 kB
Formato Adobe PDF
192.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/264585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact