
Ruelle–Takens–Newhouse scenario in reaction-diffusion-convection system
Marcello Antonio Budroni,1 Marco Masia,1 Mauro Rustici,1,a� Nadia Marchettini,2

Vitaly Volpert,3 and Pier Carlo Cresto4

1Dipartimento di Chimica, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
2Dipartimento Scienze e Tecnologie Chimiche e dei Biosistemi, Università di Siena, Via della Diana,
2a, Siena 53100, Italy
3Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918,
69622 Villeurbanne cedex, France
4Istituto per lo Studio degli Ecosistemi, CNR, presso la Facoltà di Agraria Via E. De Nicola,
07100 Sassari, Italy

�Received 11 December 2007; accepted 15 February 2008; published online 17 March 2008�

Direct numerical simulations of the transition process from periodic to chaotic dynamics are
presented for two variable Oregonator-diffusion model coupled with convection. Numerical
solutions to the corresponding reaction-diffusion-convection system of equations show that natural
convection can change in a qualitative way, the evolution of concentration distribution, as compared
with convectionless conditions. The numerical experiments reveal distinct bifurcations as the
Grashof number is increased. A transition to chaos similar to Ruelle–Takens–Newhouse scenario is
observed. Numerical results are in agreement with the experiments. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2894480�

The process by which a laminar viscous flow undergoes
transition to turbulence is a topic of notable fluid-dynamical
interest. Experiments1 and numerical simulations2 of closed
system flows like Rayleigh–Bernard convection3–5 have
pointed out how the evolution to turbulence follows a spe-
cific route and well-definite sequence of transition on the
basis of flow features.6 In particular it was observed7 that
transitions to chaos in self-sustained oscillatory flows are
consistent with the well-known Ruelle–Takens–Newhouse
�RTN� scenario.8 The onset of convection in self-sustained
oscillating chemical reactions such as the Belousov–
Zhabotinsky �BZ� reaction9 had been extensively studied10,11

proving an effective coupling between kinetic and hydrody-
namic of the system. On the other hand, it was shown12,13

how autocatalytic systems exhibit aperiodic and chaotic dy-
namics by the coupling of reaction kinetics to transport phe-
nomena. This coupling is expected in particular for the BZ
reaction in closed unstirred reactors14,15 by the strict experi-
mental dependence in the onset of chaos on �i� the percent in
volume of initial reactants concentrations,16 �ii� the system
viscosity,17 �iii� the temperature,18 and �iv� the reactor
geometry.19 A suitable choice of starting values for these pa-
rameters results in a RTN transition to chaos when the sys-
tem is far from equilibrium and the inverse RTN scenario as
the reaction drifts to the ultimate state.20

Taking into account the combination of the parameters
controlling the fluid dynamics and the chemistry of the sys-
tem would be useful to understand the instabilities occurring
in the BZ reaction in a close unstirred reactor. The model
used to simulate the system is a two-dimensional vertical
slab which had been demonstrated to be a good approxima-
tion to the three-dimensional problem.10 A set of reaction-

diffusion-convection partial derivative equations is solved by
means of numerical integration over a suitable grid. This
model allows one to focus on the contribution of convection
and to neglect the consumption of reactants. Chemical kinet-
ics is formulated using the well-known two-variables Orego-
nator model21–23 proposed for the first time by Fields–Köros–
Noyes. They defined two nonlinear coupled differential
equations,

dc1

dt
=

1

�
�c1�1 − c1� + fc2

q − c1

q + c2
� = k1�c1,c2� , �1�

dc2

dt
= c1 − c2 = k2�c1,c2� , �2�

where c1 and c2 are, respectively, the nondimensional con-
centrations of the intermediate species HBrO2 and Ce4+ de-
rived by the dimensional ones C1 and C2 as follows:

c1 = 2C1
k4

k5A
,

c2 = C2
k4k0B

�k5A�2 ,

A ,B being the starting reactant dimensional concentrations,
respectively, of BrO3

− and Malonic acid; and k0, k4, k5 are
dimensional rate constants involved in the related steps of
the Oregonator model. The ki�c1 ,c2� are the dimensionless
kinetic functions scaled by t0=1 /k0B. The functions describ-
ing initial concentrations were set according to the model for
a reaction-diffusion BZ system proposed by Jahnke et al.,24a�Electronic mail: rustici@uniss.it.
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c1
0 = 0.8 if 0 � � � 0.5, �3�

=c1�ss� elsewhere, �4�

c2
0 = �c2�ss� +

�

8�f
� � 1.3, �5�

where c2�ss�=c1�ss�=q�f +1� / �f −1�, � is the polar coordinate
angle and, as suggested by the experimental results about the
influence of the initial concentrations on the onset of chaos,16

the original function for c2
0 was multiplied by a factor of 1.3.

The kinetic parameters related to initial concentrations
�=k0B / �H+�k5A and t0 are, respectively, set equal to 0.005
and 21 s. This configuration describes a general inhomoge-
neous starting point for the unstirred system. The parameters
which rule the oscillating behavior were set f =1.6 and
q=2k3k4 /k2k5 arbitrarily to 0.01 instead that 0.0002 found by
Tyson,21 since for values � 0.01 it has little effect on
rotating-wave solutions. In the rest of the paper, when we
refer to species concentration ci, we mean the average value
of the nondimensional concentrations calculated over the
grid at each time step.

The Navier–Stokes equations governing the velocity
field in the slab were coupled to the reaction-diffusion equa-
tion, to model natural convection. They are written in a di-
mensionless form using the time scale defined above
t0=21 s and the space scale x0=0.06 cm, arbitrarily im-
posed to be equal to the entire space domain explored, just
greater than the value 0.05 cm �the minimal dimension for
which in the real experiment chaos is observed19�. The set of
dimensionless equations was formulated in the �−� form
and in the Boussinesq approximation25
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where D	=	t0 /x0
2=58.50 is the dimensionless viscosity �	

being the kinematic viscosity set equal to the water viscosity
0.01 cm2 /s�, Di=Dt0 /x0

2=0.00350 is the dimensionless dif-
fusivity �D being the dimensional diffusivities of the two
species assumed be equal to 0.6�10−7 cm2 /s�; u=U /v0 and
v=V /v0 are dimensionless horizontal and vertical compo-
nents of the velocity field; and v0 is the velocity scale
�namely the ratio of the kinematic viscosity with our length
scale times the dimensionless viscosity�. Gri=gx0

3
�i /�i	
2 is

the Grashof number for the ith species �g is the gravitational
acceleration �980 cm /s2� and 
�i /�i is the density variation
due to the change of the concentration of the ith species with
respect to a reference value c0i�. This number is the control
parameter chosen to follow the transition to chaos. It repre-
sents the entity of convection only ascribed to isothermal
density changes and is related to the hydrodynamic instabil-
ity, giving the balance between momentum and viscosity
forces acting in the system. The temperature terms are ne-
glected since it has been demonstrated that diffusion of
chemicals is two orders of magnitude smaller than thermal
diffusivity and has a stronger influence for the onset of
convection.11,26,27 Equations �6�–�10� were solved numeri-
cally using the alternating direction finite difference method:
this method allows the reduction of the problem to a set of
linear algebraic equations where the matrix of coefficients is
cast in a tridiagonal form. Numerical integration was per-
formed using the time step of 1.0�10−5 on a square grid of
100 points in each direction. Other computations were car-
ried out changing either the time step or the number of grid
points, in order to check the stability and numerical accuracy.
The boundary conditions are no-slip boundary conditions for
the fluid velocity and no-flow boundary conditions for
chemical concentrations at the wall of the slab.

In our calculations we varied Gri between 0.00 and
12.50. Following the route to chaos various dynamical re-
gimes can be discerned but in this paper are evidenced three
fundamental moments.

Periodic regime. In Fig. 1 a limit cycle characterized by
fundamental frequency �1=0.747 Oregonator frequency
units is shown. It was obtained by hindering convective flow,
i.e., with Gri=0.00.

The result of the numerical solution of the problem for
both Grashof numbers = 9.40 is shown in Fig. 2. After
a transient regime �about 70t0� the dynamics of HBrO2 and
Ce4+ was periodic with one fundamental frequency
�1=0.397, different from that observed in Fig. 1. The fre-
quency observed shows that the convection is coupled with
the kinetic-diffusion system. The periodicity of the new so-
lution presents a retard with respect to the convectionless
stationary state probably because of the hydrodynamic
inertia.

FIG. 1. Phase space trajectories of Ce4+ vs HBrO2 for the Grashof
number = 0.00.
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Quasiperiodic regime. As the Grashof number reaches
the value 9.80, a quasiperiodic behavior is found �see Fig.
3�a��. The toroidal nature of the flow is confirmed by the
Fourier power spectrum �Fig. 3�b��. Two characteristic fun-
damental frequencies ��1 ,�2� and their linear combinations
are shown. The ratio �1 /�2 is an irrational number.

Chaotic regime. If the Grashof number is further in-
creased �12.50�, an aperiodic behavior, associated with a
strange attractor �Fig. 4�a��, is observed. The time series
manifest sensitivity to initial conditions consistent with one
of the most distinctive features for chaotic dynamics. To test
for chaos, we have also calculated the largest Lyapunov ex-
ponents, �, using the Rosestein algorithm from TISEAN

package28 �Fig. 4�b��. A value of �=0.018 was found.
To summarize, self-sustained oscillations are investi-

gated by direct numerical simulations of a reaction-diffusion-
convection model. The numerical results reveal a transition
process from periodic to chaotic behavior due to instabilities
induced by convection. Chaos occurs by a Ruelle–Takens–
Newhouse scenario characterized by a finite number of suc-
cessive supercritical Hopf bifurcations as the Grashof num-
ber is increased. A direct connection to experiment, though,
is not feasible because the Grashof number is not measured
in batch experiments. Nevertheless, this number is known to
be correlated with experimental parameters such as the me-
dium viscosity or the reactor geometry. According to such
relation, our simulation results agree with previous
experiments19,20 and explain the observed behavior, i.e., that
the transition to chaos is related with the onset of convection.

We gratefully acknowledge the Cybersar project man-
aged by the Consorzio COSMOLAB.
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