An early estimation of the exact number of fruits, flowers, and trees helps farmers to make better decisions on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on manual counting of fruits or flowers by workers is a time consuming and expensive process and it is not feasible for large fields. Automatic yield estimation based on robotic agriculture provides a viable solution in this regard. In a typical image classification process, the task is not only to specify the presence or absence of a given object on a specific location, while counting how many objects are present in the scene. The success of these tasks largely depends on the availability of a large amount of training samples. This paper presents a detector of bunches of one fruit, grape, based on a deep convolutional neural network trained to detect vine bunches directly on the field. Experimental results show a 91% mean Average Precision.

In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment / Ghiani, Luca; Sassu, Alberto; Palumbo, Francesca; Mercenaro, Luca; Gambella, Filippo. - In: SENSORS. - ISSN 1424-8220. - 21:11(2021), pp. 1-21. [10.3390/s21113908]

In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment

Ghiani, Luca
Writing – Original Draft Preparation
;
Sassu, Alberto
Investigation
;
Palumbo, Francesca
Resources
;
Mercenaro, Luca
Data Curation
;
Gambella, Filippo
Writing – Original Draft Preparation
2021

Abstract

An early estimation of the exact number of fruits, flowers, and trees helps farmers to make better decisions on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on manual counting of fruits or flowers by workers is a time consuming and expensive process and it is not feasible for large fields. Automatic yield estimation based on robotic agriculture provides a viable solution in this regard. In a typical image classification process, the task is not only to specify the presence or absence of a given object on a specific location, while counting how many objects are present in the scene. The success of these tasks largely depends on the availability of a large amount of training samples. This paper presents a detector of bunches of one fruit, grape, based on a deep convolutional neural network trained to detect vine bunches directly on the field. Experimental results show a 91% mean Average Precision.
In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment / Ghiani, Luca; Sassu, Alberto; Palumbo, Francesca; Mercenaro, Luca; Gambella, Filippo. - In: SENSORS. - ISSN 1424-8220. - 21:11(2021), pp. 1-21. [10.3390/s21113908]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/247145
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact