Endo-polygalacturonase (PG) may be a critical virulence factor secreted by several fungi upon plant invasion. The single-copy gene encoding PG in Fusarium verticillioides and in eight other species of the Gibberella fujikuroi complex (F. sacchari, F. fujikuroi, F. proliferatum, F. subglutinans, F. thapsinum, F. nygamai, F. circinatum, and F. anthophilum) was functionally analyzed in this paper. Both the nucleotide and amino acid sequences were highly similar among the 12 strains of F. verticillioides analyzed, as well as among those from the G. fujikuroi complex. The PGs were not inhibited by the polygalacturonase-inhibiting proteins (PGIPs) from the monocot asparagus and leek plants, but were inhibited to variable extents by bean PGIP. PGs from F. verticillioides, F. nygamai and one strain of F. proliferatum were barely inhibited. Residue 97 within PG was demonstrated to contribute to the different levels of inhibition. Together these findings provide new insights into the structural and functional relationships between the PG from the species of the G. fujikuroi complex and the plant PGIP. © 2007 Elsevier Inc. All rights reserved.
A single amino acid substitution in highly similar endo-PGs from Fusarium verticillioides and related Fusarium species affects PGIP inhibition / Raiola, A.; Sella, L.; Castiglioni, C.; Balmas, Virgilio; Favaron, F.. - In: FUNGAL GENETICS AND BIOLOGY. - ISSN 1087-1845. - 45:5(2008), pp. 776-789. [10.1016/j.fgb.2007.11.003]
A single amino acid substitution in highly similar endo-PGs from Fusarium verticillioides and related Fusarium species affects PGIP inhibition
BALMAS, Virgilio;
2008-01-01
Abstract
Endo-polygalacturonase (PG) may be a critical virulence factor secreted by several fungi upon plant invasion. The single-copy gene encoding PG in Fusarium verticillioides and in eight other species of the Gibberella fujikuroi complex (F. sacchari, F. fujikuroi, F. proliferatum, F. subglutinans, F. thapsinum, F. nygamai, F. circinatum, and F. anthophilum) was functionally analyzed in this paper. Both the nucleotide and amino acid sequences were highly similar among the 12 strains of F. verticillioides analyzed, as well as among those from the G. fujikuroi complex. The PGs were not inhibited by the polygalacturonase-inhibiting proteins (PGIPs) from the monocot asparagus and leek plants, but were inhibited to variable extents by bean PGIP. PGs from F. verticillioides, F. nygamai and one strain of F. proliferatum were barely inhibited. Residue 97 within PG was demonstrated to contribute to the different levels of inhibition. Together these findings provide new insights into the structural and functional relationships between the PG from the species of the G. fujikuroi complex and the plant PGIP. © 2007 Elsevier Inc. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.