Random amplification of polymorphic DNA (RAPD-PCR) analysis was conducted on 48 isolates of Fusarium oxysporum f. sp. radicis-lycopersici (F.o.r.l.) from different geographic regions, representing all known vegetative compatibility groups (VCGs) except VCG 0097 and VCG 0099 and on eight isolates of F.oxysporum f. sp. lycopersici (F.o.l.), representing VCGs 0030, 0031, 0032 and 0033. Upon UPGMA (unweighted pair-group method with arithmetic averages) analysis of 86 RAPD-PCR markers generated by 16 informative primers and 44 markers obtained with eight microsatellite primers, a close relatedness was evident for F.o.r.l. isolates in VCGs 0090, 0092, 0096, and, to a lesser extent, for those in VCG 0093. Representatives of VCG 0091 formed a distinct group, while F.o.r.l. isolates in VCGs 0094 and 0098 were not distinguishable by the tested markers, most of which were also shared by F.o.l. isolates belonging to VCGs 0031 and 0033. F.o.l. isolates in VCGs 0030 and 0032 shared most of the molecular markers. The correlation between RAPD-PCR and microsatellite genetic distance was highly significant (R-2 = 0.77; P by Mantel test < 0.001). The molecular variability observed in both formae speciales is discussed in relation to the development of F.o.r.l.- and F.o.l.-specific diagnostic tools.
Molecular characterisation of vegetative compatibility groups in Fusarium oxysporum f. sp radicis-lycopersici and f. sp lycopersici by random amplification of polymorphic DNA and microsatellite-primed PCR / Balmas, Virgilio; Scherm, B; Di Primo, P; Rau, Domenico; Marcello, A; Migheli, Quirico. - In: EUROPEAN JOURNAL OF PLANT PATHOLOGY. - ISSN 0929-1873. - 111:1(2005), pp. 1-8. [10.1007/s10658-004-1602-9]
Molecular characterisation of vegetative compatibility groups in Fusarium oxysporum f. sp radicis-lycopersici and f. sp lycopersici by random amplification of polymorphic DNA and microsatellite-primed PCR
BALMAS, Virgilio;RAU, Domenico;MIGHELI, Quirico
2005-01-01
Abstract
Random amplification of polymorphic DNA (RAPD-PCR) analysis was conducted on 48 isolates of Fusarium oxysporum f. sp. radicis-lycopersici (F.o.r.l.) from different geographic regions, representing all known vegetative compatibility groups (VCGs) except VCG 0097 and VCG 0099 and on eight isolates of F.oxysporum f. sp. lycopersici (F.o.l.), representing VCGs 0030, 0031, 0032 and 0033. Upon UPGMA (unweighted pair-group method with arithmetic averages) analysis of 86 RAPD-PCR markers generated by 16 informative primers and 44 markers obtained with eight microsatellite primers, a close relatedness was evident for F.o.r.l. isolates in VCGs 0090, 0092, 0096, and, to a lesser extent, for those in VCG 0093. Representatives of VCG 0091 formed a distinct group, while F.o.r.l. isolates in VCGs 0094 and 0098 were not distinguishable by the tested markers, most of which were also shared by F.o.l. isolates belonging to VCGs 0031 and 0033. F.o.l. isolates in VCGs 0030 and 0032 shared most of the molecular markers. The correlation between RAPD-PCR and microsatellite genetic distance was highly significant (R-2 = 0.77; P by Mantel test < 0.001). The molecular variability observed in both formae speciales is discussed in relation to the development of F.o.r.l.- and F.o.l.-specific diagnostic tools.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.