An instrumental experiment is presented in which eleven Cu(II) complexes are studied with electron paramagnetic resonance (EPR) spectroscopy. The EPR spectroscopy allows the characterization of the geometry and electronic structure of the copper complexes. Three common ligands, ethylenediamine (en), 1,10-phenanthroline (phen), and 2,2′-bipyridine (bpy), were used. Examination of the EPR spectra of the solid-state compounds demonstrates that [Cu(en)2(ClO4)2], [Cu(en)2(BF4)2], and [Cu(en)2(NO3)2] have a dx2-y2 ground state and an elongated octahedral geometry; that [Cu(phen)2(H2O)](NO3)2, [Cu(phen)2(H2O)](BF4)2, and [Cu(bpy)2Cl]ClO4 are characterized by a geometry intermediate between the square pyramid and the trigonal bipyramid and a ground state corresponding to the linear combination of the dx2-y2 and dz2 orbitals; and that [Cu(phen)2Cl]ClO4, [Cu(phen)2Br]ClO4, [Cu(bpy)2Br]ClO4, [Cu(phen)2]ClO4, and [Cu(bpy)2I]ClO show a geometry close to the trigonal bipyramid and a ground state of dz2. A theoretical explanation of the results is presented.

The determination of the geometry of Cu(II) complexes - An EPR spectroscopy experiment / Garribba, Eugenio; Micera, Giovanni. - In: JOURNAL OF CHEMICAL EDUCATION. - ISSN 0021-9584. - 83:8(2006), pp. 1229-1232. [10.1021/ed083p1229]

The determination of the geometry of Cu(II) complexes - An EPR spectroscopy experiment

GARRIBBA, Eugenio
;
2006

Abstract

An instrumental experiment is presented in which eleven Cu(II) complexes are studied with electron paramagnetic resonance (EPR) spectroscopy. The EPR spectroscopy allows the characterization of the geometry and electronic structure of the copper complexes. Three common ligands, ethylenediamine (en), 1,10-phenanthroline (phen), and 2,2′-bipyridine (bpy), were used. Examination of the EPR spectra of the solid-state compounds demonstrates that [Cu(en)2(ClO4)2], [Cu(en)2(BF4)2], and [Cu(en)2(NO3)2] have a dx2-y2 ground state and an elongated octahedral geometry; that [Cu(phen)2(H2O)](NO3)2, [Cu(phen)2(H2O)](BF4)2, and [Cu(bpy)2Cl]ClO4 are characterized by a geometry intermediate between the square pyramid and the trigonal bipyramid and a ground state corresponding to the linear combination of the dx2-y2 and dz2 orbitals; and that [Cu(phen)2Cl]ClO4, [Cu(phen)2Br]ClO4, [Cu(bpy)2Br]ClO4, [Cu(phen)2]ClO4, and [Cu(bpy)2I]ClO show a geometry close to the trigonal bipyramid and a ground state of dz2. A theoretical explanation of the results is presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11388/82995
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 261
  • ???jsp.display-item.citation.isi??? 258
social impact