Systemic silviculture can be framed as an approach in which management practices are conceived as learning experiments. In the light of this, effective and efficient monitoring processes are required in order to inform and support the management taking explicitly into account the many system components, their interactions and its nonlinear behavior, a characteristic that determines important limitations with regard to the value of predictions. In order to evaluate evidence and turn data into decisions, monitoring effectiveness and efficiency encompass adequate statistical methods and tools for acquisition, processing and analysis of information from different sources. The present note highlights some key contributions on which to engage the development of forest monitoring under such a perspective.
La selvicoltura sistemica può essere proposta come un approccio in cui le pratiche di gestione sono concepite quali esperimenti per apprendere. Per agire occorre dunque attivare processi di monitoraggio efficaci ed efficienti, capaci di informare la gestione, tenendo espressamente conto delle molteplici componenti del sistema, delle innumerevoli interazioni e del suo comportamento non lineare, caratteristica che comporta importanti limitazioni nei riguardi del valore delle previsioni. Al fine di enucleare evidenze e ricavarne decisioni, efficacia ed efficienza del monitoraggio comportano il ricorso a metodi e strumenti statistici adeguati per la raccolta, l'elaborazione e l'analisi di informazioni derivate da fonti diverse. La presente nota sottolinea alcuni fondamentali contributi su cui impegnare lo sviluppo del monitoraggio forestale in questa prospettiva.
Systemic silviculture, adaptive management and forest monitoring perspectives / Corona, Piermaria; Scotti, Roberto. - In: L' ITALIA FORESTALE E MONTANA. - ISSN 2036-3494. - LXVI:3(2011), pp. 219-224.
Systemic silviculture, adaptive management and forest monitoring perspectives
Scotti, Roberto
2011-01-01
Abstract
Systemic silviculture can be framed as an approach in which management practices are conceived as learning experiments. In the light of this, effective and efficient monitoring processes are required in order to inform and support the management taking explicitly into account the many system components, their interactions and its nonlinear behavior, a characteristic that determines important limitations with regard to the value of predictions. In order to evaluate evidence and turn data into decisions, monitoring effectiveness and efficiency encompass adequate statistical methods and tools for acquisition, processing and analysis of information from different sources. The present note highlights some key contributions on which to engage the development of forest monitoring under such a perspective.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.