To explore the functional consequences of cannabinoid withdrawal in the rat mesolimbic dopamine system, we investigated the anatomical morphology of the mesencephalic, presumed dopaminergic, neurons and their main post-synaptic target in the Nucleus Accumbens. We found that TH-positive neurons shrink and Golgi-stained medium spiny neurons loose dendritic spines in withdrawal rats after chronic cannabinoids administration. Similar results were observed after administration of the cannabinoid antagonist rimonabant to drug-naïve rats supporting a role for endocan- nabinoids in neurogenesis, axonal growth and synaptogenesis. This evidence supports the tenet that withdrawal from addictive compounds alters functioning of the mesolimbic system. The data add to a growing body of work which indicates a hypodopaminergic state as a distinctive feature of the “addicted brain”.
Altered mesolimbic dopamine system in THC dependence / S., Spiga; A., Lintas; Diana, Marco. - In: CURRENT NEUROPHARMACOLOGY. - ISSN 1570-159X. - 9:(2011), pp. 200-204. [10.2174/157015911795017083]
Altered mesolimbic dopamine system in THC dependence
DIANA, Marco
2011-01-01
Abstract
To explore the functional consequences of cannabinoid withdrawal in the rat mesolimbic dopamine system, we investigated the anatomical morphology of the mesencephalic, presumed dopaminergic, neurons and their main post-synaptic target in the Nucleus Accumbens. We found that TH-positive neurons shrink and Golgi-stained medium spiny neurons loose dendritic spines in withdrawal rats after chronic cannabinoids administration. Similar results were observed after administration of the cannabinoid antagonist rimonabant to drug-naïve rats supporting a role for endocan- nabinoids in neurogenesis, axonal growth and synaptogenesis. This evidence supports the tenet that withdrawal from addictive compounds alters functioning of the mesolimbic system. The data add to a growing body of work which indicates a hypodopaminergic state as a distinctive feature of the “addicted brain”.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.