In this paper we prove a homogenization theorem for interfacial discrete energies defined on an a-periodic Penrose tiling in R-2. A general result on the homogenization of surface energies cannot be directly adapted to this case; the existence of the limit interfacial energy is therefore proved by showing some refined "quasi-periodic" properties of the tilings.
INTERFACIAL ENERGIES ON PENROSE LATTICES / Braides, A; Solci, Margherita. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 21:5(2011), pp. 1193-1210. [10.1142/S0218202511005295]
INTERFACIAL ENERGIES ON PENROSE LATTICES
SOLCI, Margherita
2011-01-01
Abstract
In this paper we prove a homogenization theorem for interfacial discrete energies defined on an a-periodic Penrose tiling in R-2. A general result on the homogenization of surface energies cannot be directly adapted to this case; the existence of the limit interfacial energy is therefore proved by showing some refined "quasi-periodic" properties of the tilings.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.