In this paper we prove a homogenization theorem for interfacial discrete energies defined on an a-periodic Penrose tiling in R-2. A general result on the homogenization of surface energies cannot be directly adapted to this case; the existence of the limit interfacial energy is therefore proved by showing some refined "quasi-periodic" properties of the tilings.

INTERFACIAL ENERGIES ON PENROSE LATTICES / Braides, A; Solci, Margherita. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 21:5(2011), pp. 1193-1210. [10.1142/S0218202511005295]

INTERFACIAL ENERGIES ON PENROSE LATTICES

SOLCI, Margherita
2011-01-01

Abstract

In this paper we prove a homogenization theorem for interfacial discrete energies defined on an a-periodic Penrose tiling in R-2. A general result on the homogenization of surface energies cannot be directly adapted to this case; the existence of the limit interfacial energy is therefore proved by showing some refined "quasi-periodic" properties of the tilings.
2011
INTERFACIAL ENERGIES ON PENROSE LATTICES / Braides, A; Solci, Margherita. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 21:5(2011), pp. 1193-1210. [10.1142/S0218202511005295]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/78399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact