We prove a new inequality for the Hodge number h1,1 of irregular complex smooth projective surfaces of general type without irrational pencils of genus ≥ 2. More specifically we show that if the irregularity q satisfies q=2k+1 then h1,1≥4q−3 . This generalizes results previously known for q=3 and q=5 .

The Hodge number $h^{1,1}$ of irregular algebraic surfaces / Causin, Andrea; MENDES LOPES, M; Pirola, G. P.. - In: COLLECTANEA MATHEMATICA. - ISSN 0010-0757. - 67:1(2016), pp. 63-68. [10.1007/s13348-014-0127-6]

The Hodge number $h^{1,1}$ of irregular algebraic surfaces

CAUSIN, Andrea
;
2016-01-01

Abstract

We prove a new inequality for the Hodge number h1,1 of irregular complex smooth projective surfaces of general type without irrational pencils of genus ≥ 2. More specifically we show that if the irregularity q satisfies q=2k+1 then h1,1≥4q−3 . This generalizes results previously known for q=3 and q=5 .
2016
The Hodge number $h^{1,1}$ of irregular algebraic surfaces / Causin, Andrea; MENDES LOPES, M; Pirola, G. P.. - In: COLLECTANEA MATHEMATICA. - ISSN 0010-0757. - 67:1(2016), pp. 63-68. [10.1007/s13348-014-0127-6]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/77549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact