We prove a new inequality for the Hodge number h1,1 of irregular complex smooth projective surfaces of general type without irrational pencils of genus ≥ 2. More specifically we show that if the irregularity q satisfies q=2k+1 then h1,1≥4q−3 . This generalizes results previously known for q=3 and q=5 .
The Hodge number $h^{1,1}$ of irregular algebraic surfaces / Causin, Andrea; MENDES LOPES, M; Pirola, G. P.. - In: COLLECTANEA MATHEMATICA. - ISSN 0010-0757. - 67:1(2016), pp. 63-68. [10.1007/s13348-014-0127-6]
The Hodge number $h^{1,1}$ of irregular algebraic surfaces
CAUSIN, Andrea
;
2016-01-01
Abstract
We prove a new inequality for the Hodge number h1,1 of irregular complex smooth projective surfaces of general type without irrational pencils of genus ≥ 2. More specifically we show that if the irregularity q satisfies q=2k+1 then h1,1≥4q−3 . This generalizes results previously known for q=3 and q=5 .File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.