In the past decade, encouraging results have been obtained in extraction and analysis of proteins from formalin-fixed, paraffin-embedded (FFPE) tissues. However, 2-D PAGE protein maps with satisfactory proteomic information and comparability to fresh tissues have never been described to date. In the present study, we report 2-D PAGE separation and MS identification of full-length proteins extracted from FFPE skeletal muscle tissue. The 2-D protein profiles obtained from FFPE tissues could be matched to those achieved from frozen tissues replicates. Up to 250 spots were clearly detected in 2-D maps of proteins from FFPE tissue following standard mass-compatible silver staining. Protein spots from both FFPE and frozen tissue 2-D gels were excised, subjected to in situ hydrolysis, and identified by MS analysis. Matched spots produced matched protein identifications. Moreover, 2-D protein maps from FFPE tissues were successfully subjected to Western immunoblotting, producing comparable results to fresh-frozen tissues. In conclusion, this study provides evidence that, when adequately extracted, full-length proteins from FFPE tissues might be suitable to 2-D PAGE-MS analysis, allowing differential proteomic studies on the vast existing archives of healthy and pathological-fixed tissues.

In the past decade, encouraging results have been obtained in extraction and analysis of proteins from formalin-fixed, paraffin-embedded (FFPE) tissues. However, 2-D PAGE protein maps with satisfactory proteomic information and comparability to fresh tissues have never been described to date. In the present study, we report 2-D PAGE separation and MS identification of full-length proteins extracted from FFPE skeletal muscle tissue. The 2-D protein profiles obtained from FFPE tissues could be matched to those achieved from frozen tissues replicates. Up to 250 spots were clearly detected in 2-D maps of proteins from FFPE tissue following standard mass-compatible silver staining. Protein spots from both FFPE and frozen tissue 2-D gels were excised, subjected to in situ hydrolysis, and identified by MS analysis. Matched spots produced matched protein identifications. Moreover, 2-D protein maps from FFPE tissues were successfully subjected to Western immunoblotting, producing comparable results to fresh-frozen tissues. In conclusion, this study provides evidence that, when adequately extracted, full-length proteins from FFPE tissues might be suitable to 2-D PAGEMS analysis, allowing differential proteomic studies on the vast existing archives of healthy and pathological-fixed tissues.

2-D PAGE and MS analysis of proteins from formalin-fixed, paraffin-embedded tissues / Addis, Mf; Tanca, A; Pagnozzi, D; Rocca, Stefano; Uzzau, Sergio. - In: PROTEOMICS. - ISSN 1615-9853. - 9:18(2009), pp. 4329-4339. [10.1002/pmic.200900010]

2-D PAGE and MS analysis of proteins from formalin-fixed, paraffin-embedded tissues

ROCCA, Stefano;UZZAU, Sergio;TANCA, Alessandro
2009

Abstract

In the past decade, encouraging results have been obtained in extraction and analysis of proteins from formalin-fixed, paraffin-embedded (FFPE) tissues. However, 2-D PAGE protein maps with satisfactory proteomic information and comparability to fresh tissues have never been described to date. In the present study, we report 2-D PAGE separation and MS identification of full-length proteins extracted from FFPE skeletal muscle tissue. The 2-D protein profiles obtained from FFPE tissues could be matched to those achieved from frozen tissues replicates. Up to 250 spots were clearly detected in 2-D maps of proteins from FFPE tissue following standard mass-compatible silver staining. Protein spots from both FFPE and frozen tissue 2-D gels were excised, subjected to in situ hydrolysis, and identified by MS analysis. Matched spots produced matched protein identifications. Moreover, 2-D protein maps from FFPE tissues were successfully subjected to Western immunoblotting, producing comparable results to fresh-frozen tissues. In conclusion, this study provides evidence that, when adequately extracted, full-length proteins from FFPE tissues might be suitable to 2-D PAGE-MS analysis, allowing differential proteomic studies on the vast existing archives of healthy and pathological-fixed tissues.
In the past decade, encouraging results have been obtained in extraction and analysis of proteins from formalin-fixed, paraffin-embedded (FFPE) tissues. However, 2-D PAGE protein maps with satisfactory proteomic information and comparability to fresh tissues have never been described to date. In the present study, we report 2-D PAGE separation and MS identification of full-length proteins extracted from FFPE skeletal muscle tissue. The 2-D protein profiles obtained from FFPE tissues could be matched to those achieved from frozen tissues replicates. Up to 250 spots were clearly detected in 2-D maps of proteins from FFPE tissue following standard mass-compatible silver staining. Protein spots from both FFPE and frozen tissue 2-D gels were excised, subjected to in situ hydrolysis, and identified by MS analysis. Matched spots produced matched protein identifications. Moreover, 2-D protein maps from FFPE tissues were successfully subjected to Western immunoblotting, producing comparable results to fresh-frozen tissues. In conclusion, this study provides evidence that, when adequately extracted, full-length proteins from FFPE tissues might be suitable to 2-D PAGEMS analysis, allowing differential proteomic studies on the vast existing archives of healthy and pathological-fixed tissues.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11388/62479
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 51
social impact