Abstract Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.

Blood pressure loci identified with a gene-centric array / Johnson, T; Gaunt, Tr; Newhouse, Sj; Padmanabhan, S; Tomaszewski, M; Kumari, M; Morris, Rw; Tzoulaki, I; O'Brien, Et; Poulter, Nr; Sever, P; Shields, Dc; Thom, S; Wannamethee, Sg; Whincup, Ph; Brown, Mj; Connell, Jm; Dobson, Rj; Howard, Pj; Mein, Ca; Onipinla, A; Shaw Hawkins, S; Zhang, Y; Davey Smith, G; Day, In; Lawlor, Da; Goodall, Ah; Cardiogenics, Consortium; Fowkes, Fg; Abecasis, Gr; Elliott, P; Gateva, V; Global BPgen, Consortium; Braund, Ps; Burton, Pr; Nelson, Cp; Tobin, Md; van der Harst, P; Glorioso, Nicola Filippo; Neuvrith, H; Salvi, E; Staessen, Ja; Stucchi, A; Devos, N; Jeunemaitre, X; Plouin, Pf; Tichet, J; Juhanson, P; Org, E; Putku, M; Sõber, S; Veldre, G; Viigimaa, M; Levinsson, A; Rosengren, A; Thelle, Ds; Hastie, Ce; Hedner, T; Lee, Wk; Melander, O; Wahlstrand, B; Hardy, R; Wong, A; Cooper, Ja; Palmen, J; Chen, L; Stewart, Af; Wells, Ga; Westra, Hj; Wolfs, Mg; Clarke, R; Franzosi, Mg; Goel, A; Hamsten, A; Lathrop, M; Peden, Jf; Seedorf, U; Watkins, H; Ouwehand, Wh; Sambrook, J; Stephens, J; Casas, Jp; Drenos, F; Holmes, Mv; Kivimaki, M; Shah, S; Shah, T; Talmud, Pj; Whittaker, J; Wallace, C; Delles, C; Laan, M; Kuh, D; Humphries, Se; Nyberg, F; Cusi, D; Roberts, R; Newton Cheh, C; Franke, L; Stanton, Av; Dominiczak, Af; Farrall, M; Hingorani, Ad; Samani, Nj; Caulfield, Mj; Munroe, P. B.. - In: AMERICAN JOURNAL OF HUMAN GENETICS. - ISSN 0002-9297. - 89:11(2011), pp. 688-700.

Blood pressure loci identified with a gene-centric array.

GLORIOSO, Nicola Filippo;
2011-01-01

Abstract

Abstract Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.
2011
Blood pressure loci identified with a gene-centric array / Johnson, T; Gaunt, Tr; Newhouse, Sj; Padmanabhan, S; Tomaszewski, M; Kumari, M; Morris, Rw; Tzoulaki, I; O'Brien, Et; Poulter, Nr; Sever, P; Shields, Dc; Thom, S; Wannamethee, Sg; Whincup, Ph; Brown, Mj; Connell, Jm; Dobson, Rj; Howard, Pj; Mein, Ca; Onipinla, A; Shaw Hawkins, S; Zhang, Y; Davey Smith, G; Day, In; Lawlor, Da; Goodall, Ah; Cardiogenics, Consortium; Fowkes, Fg; Abecasis, Gr; Elliott, P; Gateva, V; Global BPgen, Consortium; Braund, Ps; Burton, Pr; Nelson, Cp; Tobin, Md; van der Harst, P; Glorioso, Nicola Filippo; Neuvrith, H; Salvi, E; Staessen, Ja; Stucchi, A; Devos, N; Jeunemaitre, X; Plouin, Pf; Tichet, J; Juhanson, P; Org, E; Putku, M; Sõber, S; Veldre, G; Viigimaa, M; Levinsson, A; Rosengren, A; Thelle, Ds; Hastie, Ce; Hedner, T; Lee, Wk; Melander, O; Wahlstrand, B; Hardy, R; Wong, A; Cooper, Ja; Palmen, J; Chen, L; Stewart, Af; Wells, Ga; Westra, Hj; Wolfs, Mg; Clarke, R; Franzosi, Mg; Goel, A; Hamsten, A; Lathrop, M; Peden, Jf; Seedorf, U; Watkins, H; Ouwehand, Wh; Sambrook, J; Stephens, J; Casas, Jp; Drenos, F; Holmes, Mv; Kivimaki, M; Shah, S; Shah, T; Talmud, Pj; Whittaker, J; Wallace, C; Delles, C; Laan, M; Kuh, D; Humphries, Se; Nyberg, F; Cusi, D; Roberts, R; Newton Cheh, C; Franke, L; Stanton, Av; Dominiczak, Af; Farrall, M; Hingorani, Ad; Samani, Nj; Caulfield, Mj; Munroe, P. B.. - In: AMERICAN JOURNAL OF HUMAN GENETICS. - ISSN 0002-9297. - 89:11(2011), pp. 688-700.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/62107
Citazioni
  • ???jsp.display-item.citation.pmc??? 66
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact