A new series of 1H-benzofuro[3,2-c]pyrazole-3-carboxamides was synthesized. The novel compounds (15e24) were evaluated for their affinity to CB2 and CB1 cannabinoid receptors. The synthesis of the title compounds takes advantage of the acid-catalysed thermal cyclization of bicyclic hydrazone ethyl 2-(2- (2,4-dichlorophenyl)hydrazono)-2-(6-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate to tricyclic ethyl 1-(2,4-dichlorophenyl)-6-methyl-1H-benzofuro[3,2-c]pyrazol-3-carboxylate. All the obtained derivatives showed high affinity to CB2 receptors. Moreover, significant selectivity for CB2 over CB1 receptors was highlighted for lead derivatives amongst the novel series. The best binding profiles were determined for homologues bearing monocyclic and bicyclic mono- terpenic substituents at the carbamoyl group at 3 position of the pyrazole ring (KiCB2 < 4 nM). In particular, the isopinocampheyl-substituted derivative 22 exhibited the highest selectivity for CB2 re- ceptors with Ki values of 3.7 and 2398 nM for CB2 and CB1 receptors, respectively. Preliminary functional assays evidenced CB2 agonism behaviour for all the assayed novel derivatives.
Tricyclic pyrazoles. Part 6. Benzofuro[3,2-c]pyrazoles: A versatile architecture for CB2 selective ligands / Pinna, Giovanni; Loriga, Giovanni; Lazzari, Paolo; Ruiu, Stefania; Falzoi, Matteo; Frau, Simona; Pau, Amedeo; Murineddu, Gabriele; Asproni, Battistina; Pinna, Gerard A.. - In: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0223-5234. - 82:(2014), pp. 281-292. [10.1016/j.ejmech.2014.05.055]
Tricyclic pyrazoles. Part 6. Benzofuro[3,2-c]pyrazoles: A versatile architecture for CB2 selective ligands
Pinna, Giovanni;FRAU, Simona;Pau, Amedeo;Murineddu, Gabriele;Asproni, Battistina;Pinna, Gerard A.
2014-01-01
Abstract
A new series of 1H-benzofuro[3,2-c]pyrazole-3-carboxamides was synthesized. The novel compounds (15e24) were evaluated for their affinity to CB2 and CB1 cannabinoid receptors. The synthesis of the title compounds takes advantage of the acid-catalysed thermal cyclization of bicyclic hydrazone ethyl 2-(2- (2,4-dichlorophenyl)hydrazono)-2-(6-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate to tricyclic ethyl 1-(2,4-dichlorophenyl)-6-methyl-1H-benzofuro[3,2-c]pyrazol-3-carboxylate. All the obtained derivatives showed high affinity to CB2 receptors. Moreover, significant selectivity for CB2 over CB1 receptors was highlighted for lead derivatives amongst the novel series. The best binding profiles were determined for homologues bearing monocyclic and bicyclic mono- terpenic substituents at the carbamoyl group at 3 position of the pyrazole ring (KiCB2 < 4 nM). In particular, the isopinocampheyl-substituted derivative 22 exhibited the highest selectivity for CB2 re- ceptors with Ki values of 3.7 and 2398 nM for CB2 and CB1 receptors, respectively. Preliminary functional assays evidenced CB2 agonism behaviour for all the assayed novel derivatives.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.