Cork harvesting and stopper production represent a major forest industry in Sardinia ( Italy). The target of the present investigation was to evaluate the "classification tree'' as a tool to discover possible relationships between microsite characteristics and cork quality. Seven main cork oak ( Quercus suber) producing areas have been identified in Sardinia, for a total of more than 122,000 ha. Sixty-three sample trees, distributed among different geographical locations and microsite conditions, were selected. A soil pro. le near each sample tree was described, soil samples were collected and analysed. After debarking, cork quality of each sample tree was graded by an independent panel of experts. Microsites where trees had more than 50% of the extracted cork graded in the best quality class, according to the official quality standard in Italy, were labelled as prime microsites, the others as nonprime microsites. Relationships between a binary dummy variable ( 0 for nonprime microsites, 1 for prime microsites) and site factors were investigated using classification tree analysis to select the relevant variables and to de. ne the classification scheme. Prime quality microsites for cork production proved to be characterised by elevation, soil phosphorus content and sandiness. Results have been compared with those of the more conventional parametric approach by logistic regression. The work demonstrates the advantages of the classification tree method. The model may be appropriate for classifications at landscape and stand mapping levels, where it is possible to sample a number of microsites and to evaluate distributional characteristics of model output, while its precision is only indicative when estimating the prime quality of single microsites.
Stima della qualità del sito mediante Classification Tree: un’applicazione alla qualità del sughero in Sardegna La raccolta del sughero e la produzione di tappi rappresentano la principale industria forestale della Sardegna (Italia). Obiettivo di questa indagine è valutare il metodo Classification Tree come strumento per trovare possibili relazioni tra caratteristiche del micro-sito e qualità del sughero. Sono state individuate le sette principali aree sughericole della Sardegna, per una superficie totale di oltre 122.000 ettari. In queste sono state selezionate 63 piante distribuite in località geografiche caratterizzate da differenti condizioni micro-ambientali. Per ogni pianta si è descritto il profilo del suolo, che è stato campionato e analizzato. Alla decortica un panel indipendente di esperti ha provveduto a classificare il sughero estratto da ciascuna pianta campione. I micro-siti nei quali più del 50% delle piante avevano sughero attribuito alla miglior classe qualitativa degli standard ufficiali italiani, sono stati classificati come micro-siti prime, gli altri come nonprime. Sono dunque state esaminate le relazioni tra la variabile di comodo binaria (dummy) così ricavata (0 per i micrositi nonprime, 1 per i micro-siti prime) e alcuni fattori ambientali, utilizzando l’analisi Classification Tree per selezionare le variabili più pertinenti e definire lo schema di classificazione. È risultato che i micro-siti prime per la produzione di sughero sono caratterizzati per quota, contenuto di fosforo nel suolo e “sabbiosità” [(sabbia – argilla)/ sabbia]. I risultati sono stati confrontati con quelli ottenuti tramite l’approccio più convenzionale della regressione logistica. La ricerca dimostra i vantaggi del metodo Classification Tree: il modello può essere adatto per classificazioni a scala territoriale e di popolamento, dove è possibile campionare un numero di micro-siti utile per stimare le caratteristiche di distribuzione dei risultati del modello, mentre la sua precisione è soltanto indicativa nella stima della qualità dei singoli micro-siti. Quercus suber - Cork quality - Site classification and evaluation -
Site quality evaluation by classification tree: an application to cork quality in Sardinia / Corona, Piermaria; Dettori, Sandro; Filigheddu, Maria Rosaria; Maetzke, Federico; Scotti, Roberto. - In: EUROPEAN JOURNAL OF FOREST RESEARCH. - ISSN 1612-4669. - 124:1(2005), pp. 37-46. [10.1007/s10342-004-0047-1]
Site quality evaluation by classification tree: an application to cork quality in Sardinia
Dettori, Sandro;Filigheddu, Maria Rosaria;Scotti, Roberto
2005-01-01
Abstract
Cork harvesting and stopper production represent a major forest industry in Sardinia ( Italy). The target of the present investigation was to evaluate the "classification tree'' as a tool to discover possible relationships between microsite characteristics and cork quality. Seven main cork oak ( Quercus suber) producing areas have been identified in Sardinia, for a total of more than 122,000 ha. Sixty-three sample trees, distributed among different geographical locations and microsite conditions, were selected. A soil pro. le near each sample tree was described, soil samples were collected and analysed. After debarking, cork quality of each sample tree was graded by an independent panel of experts. Microsites where trees had more than 50% of the extracted cork graded in the best quality class, according to the official quality standard in Italy, were labelled as prime microsites, the others as nonprime microsites. Relationships between a binary dummy variable ( 0 for nonprime microsites, 1 for prime microsites) and site factors were investigated using classification tree analysis to select the relevant variables and to de. ne the classification scheme. Prime quality microsites for cork production proved to be characterised by elevation, soil phosphorus content and sandiness. Results have been compared with those of the more conventional parametric approach by logistic regression. The work demonstrates the advantages of the classification tree method. The model may be appropriate for classifications at landscape and stand mapping levels, where it is possible to sample a number of microsites and to evaluate distributional characteristics of model output, while its precision is only indicative when estimating the prime quality of single microsites.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.