This paper is devoted to the asymptotic analysis of the problem of linear elasticity for an anisotropic and inhomogeneous body occupying, in its reference configuration, a cylindrical domain with a rectangular cross section with sides proportional to ε and ε2 and clamped on one of its bases. The sequence of solutions uε of the equilibrium problem is shown to converge in an appropriate topology, as ε goes to zero, to the solution of a problem for a beam in which the extensional, flexural, and torsional effects are all coupled together.
Anisotropic inhomogeneous rectangular thin-walled beams / L., Freddi; F., Murat; Paroni, Roberto. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 40:(2008), pp. 1923-1951.
Anisotropic inhomogeneous rectangular thin-walled beams
PARONI, Roberto
2008-01-01
Abstract
This paper is devoted to the asymptotic analysis of the problem of linear elasticity for an anisotropic and inhomogeneous body occupying, in its reference configuration, a cylindrical domain with a rectangular cross section with sides proportional to ε and ε2 and clamped on one of its bases. The sequence of solutions uε of the equilibrium problem is shown to converge in an appropriate topology, as ε goes to zero, to the solution of a problem for a beam in which the extensional, flexural, and torsional effects are all coupled together.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.