Cell-based methods for simulating wildfires can be computationally more efficient than techniques based on the fire perimeter expansion. In spite of this, their success has been limited by the distortions that plague the simulated shapes. This article presents a novel algorithm for wildfire simulation through Cellular Automata (CA), which is able to effectively mitigate the problem of distorted fire shapes. Such a result is obtained allowing spread directions that are not constrained to the few angles imposed by the lattice of cells and the neighborhood size. The characteristics of the proposed algorithm are empirically investigated under homogeneous conditions through some comparisons with the outcomes of a typical CA-based simulator. Also, using two significant heterogeneous landscapes, a comparison with the vector-based simulator FARSITE is discussed. According to the results of this study, the proposed approach performs significantly better, in terms of accuracy, than the CA taken as reference. In addition, at a far less computational cost, it provides burned regions that are equivalent, for practical purposes, to those given by FARSITE.

A New Algorithm for Simulating Wildfire Spread through Cellular Automata / Trunfio G. A.; D’Ambrosio D.; Rongo R.; Spataro W.; Di Gregorio S.. - In: ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION. - ISSN 1049-3301. - 22:1(2011), pp. 1-26. [10.1145/2043635.2043641]

A New Algorithm for Simulating Wildfire Spread through Cellular Automata

TRUNFIO, Giuseppe, Andrea;
2011

Abstract

Cell-based methods for simulating wildfires can be computationally more efficient than techniques based on the fire perimeter expansion. In spite of this, their success has been limited by the distortions that plague the simulated shapes. This article presents a novel algorithm for wildfire simulation through Cellular Automata (CA), which is able to effectively mitigate the problem of distorted fire shapes. Such a result is obtained allowing spread directions that are not constrained to the few angles imposed by the lattice of cells and the neighborhood size. The characteristics of the proposed algorithm are empirically investigated under homogeneous conditions through some comparisons with the outcomes of a typical CA-based simulator. Also, using two significant heterogeneous landscapes, a comparison with the vector-based simulator FARSITE is discussed. According to the results of this study, the proposed approach performs significantly better, in terms of accuracy, than the CA taken as reference. In addition, at a far less computational cost, it provides burned regions that are equivalent, for practical purposes, to those given by FARSITE.
A New Algorithm for Simulating Wildfire Spread through Cellular Automata / Trunfio G. A.; D’Ambrosio D.; Rongo R.; Spataro W.; Di Gregorio S.. - In: ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION. - ISSN 1049-3301. - 22:1(2011), pp. 1-26. [10.1145/2043635.2043641]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11388/49522
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 44
social impact