Levels of uric acid, xanthine, hypoxanthine, ascorbic acid (AA), dehydroascorbic acid (DHAA), glutathione (GSH), noradrenaline (NA), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) were determined in the striatum and/or in the brain stem of 3-month-old male Wistar rats given allopurinol (300 mg/kg day by gavage) for 3 days before a single MPTP 35 mg/kg dose IP. Allopurinol alone decreased uric acid and increased xanthine levels both in the striatum and in the brain stem; moreover, allopurinol decreased striatal DOPAC + HVA/DA ratio and increased 5-HIAA/5HT ratio in the brainstem. Allopurinol affected neither regional MPTP nor MPP+ disposition. Allopurinol potentiated the MPTP-induced decrease in the DOPAC+HVA/DA ratio and increase in striatal AA oxidation; in addition, allopurinol antagonised the MPTP-induced: (i) increase in uric acid levels; (ii) decrease in NA levels in both regions, in DA levels, and in the 5-HIAA/5-HT ratio in the brain stem: (iii) increase in AA oxidation in the brain stem. In conclusion, the MPP(+)-induced oxidative stress mediated by xanthine oxidase seems to be involved in DA depletion in the brainstem and in NA depletion in both regions; moreover, striatal uric acid may have an active role in the neuronal antioxidant pool.

Further investigation of allopurinol effects on MPTP-induced oxidative stress in the striatum and brain stem of the rat / Desole, Maria Speranza; Esposito, G; Fresu, L; Migheli, Rossana; Sircana, S; Delogu, R; Miele, M; Miele, E.. - In: PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR. - ISSN 0091-3057. - 54:2(1996), pp. 377-383.

Further investigation of allopurinol effects on MPTP-induced oxidative stress in the striatum and brain stem of the rat.

DESOLE, Maria Speranza;MIGHELI, Rossana;
1996-01-01

Abstract

Levels of uric acid, xanthine, hypoxanthine, ascorbic acid (AA), dehydroascorbic acid (DHAA), glutathione (GSH), noradrenaline (NA), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) were determined in the striatum and/or in the brain stem of 3-month-old male Wistar rats given allopurinol (300 mg/kg day by gavage) for 3 days before a single MPTP 35 mg/kg dose IP. Allopurinol alone decreased uric acid and increased xanthine levels both in the striatum and in the brain stem; moreover, allopurinol decreased striatal DOPAC + HVA/DA ratio and increased 5-HIAA/5HT ratio in the brainstem. Allopurinol affected neither regional MPTP nor MPP+ disposition. Allopurinol potentiated the MPTP-induced decrease in the DOPAC+HVA/DA ratio and increase in striatal AA oxidation; in addition, allopurinol antagonised the MPTP-induced: (i) increase in uric acid levels; (ii) decrease in NA levels in both regions, in DA levels, and in the 5-HIAA/5-HT ratio in the brain stem: (iii) increase in AA oxidation in the brain stem. In conclusion, the MPP(+)-induced oxidative stress mediated by xanthine oxidase seems to be involved in DA depletion in the brainstem and in NA depletion in both regions; moreover, striatal uric acid may have an active role in the neuronal antioxidant pool.
1996
Further investigation of allopurinol effects on MPTP-induced oxidative stress in the striatum and brain stem of the rat / Desole, Maria Speranza; Esposito, G; Fresu, L; Migheli, Rossana; Sircana, S; Delogu, R; Miele, M; Miele, E.. - In: PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR. - ISSN 0091-3057. - 54:2(1996), pp. 377-383.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/48309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact