Despite significant progress in cryopreservation of mammalian oocytes and embryos, many ofthe molecular and biochemical events that underlie this technology are poorly understood. In recent years, researchers have focused on obtaining viable oocytes that are developmentally competent. Even under the most favourable conditions, experimental approaches have achieved only limited success compared with fresh oocytes used in routine in vitro embryo production. Chilling injuries and toxic effects of the cryoprotectants are the major adverse consequences following cryoprocedures. To overcome these problems, different strategies have been developed for improving cryopreservation results. These strategies include reducing container volumes, increasing the thermal gradient, changing the cell surface/volume ratio, enhancing cryotolerance by supplementation with various additives or modifying the lipid composition of the oocyte membrane. In order to develop new strategies for reducing the various forms of stress associated with oocyte cryopreservation, it is fundamental to gain a better understanding of the major changes responsible for poor post-thaw survival. With this knowledge, we hope that oocyte cryostorage will become a fully reliable reproductive technique in the near future.
Despite significant progress in cryopreservation of mammalian oocytes and embryos, many of the molecular and biochemical events that underlie this technology are poorly understood. In recent years, researchers have focused on obtaining viable oocytes that are developmentally competent. Even under the most favourable conditions, experimental approaches have achieved only limited success compared with fresh oocytes used in routine in vitro embryo production. Chilling injuries and toxic effects of the cryoprotectants are the major adverse consequences following cryoprocedures. To overcome these problems, different strategies have been developed for improving cryopreservation results. These strategies include reducing container volumes, increasing the thermal gradient, changing the cell surface/volume ratio, enhancing cryotolerance by supplementation with various additives or modifying the lipid composition of the oocyte membrane. In order to develop new strategies for reducing the various forms of stress associated with oocyte cryopreservation, it is fundamental to gain a better understanding of the major changes responsible for poor post-thaw survival. With this knowledge, we hope that oocyte cryostorage will become a fully reliable reproductive technique in the near future.
Oocyte cryopreservation: oocyte assessment and strategies for improving survival / Ledda, Sergio; Bogliolo, Luisa; Succu, Sara; Ariu, F; Bebbere, D; Leoni, Giovanni Giuseppe; Naitana, S.. - In: REPRODUCTION FERTILITY AND DEVELOPMENT. - ISSN 1031-3613. - 19:(2007), pp. 13-23. [10.1071/RD06126]
Oocyte cryopreservation: oocyte assessment and strategies for improving survival
LEDDA, Sergio;BOGLIOLO, Luisa;SUCCU, Sara;BEBBERE D;LEONI, Giovanni Giuseppe;
2007-01-01
Abstract
Despite significant progress in cryopreservation of mammalian oocytes and embryos, many ofthe molecular and biochemical events that underlie this technology are poorly understood. In recent years, researchers have focused on obtaining viable oocytes that are developmentally competent. Even under the most favourable conditions, experimental approaches have achieved only limited success compared with fresh oocytes used in routine in vitro embryo production. Chilling injuries and toxic effects of the cryoprotectants are the major adverse consequences following cryoprocedures. To overcome these problems, different strategies have been developed for improving cryopreservation results. These strategies include reducing container volumes, increasing the thermal gradient, changing the cell surface/volume ratio, enhancing cryotolerance by supplementation with various additives or modifying the lipid composition of the oocyte membrane. In order to develop new strategies for reducing the various forms of stress associated with oocyte cryopreservation, it is fundamental to gain a better understanding of the major changes responsible for poor post-thaw survival. With this knowledge, we hope that oocyte cryostorage will become a fully reliable reproductive technique in the near future.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.