The expression patterns of four maternal effect genes (MEG), namely zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15),were determined in ovine oocytes and in vitro-produced preimplantation embryos. The existence of ZAR1 and MATER in ovine species has not been reported previously. Reverse transcription–polymerase chain reaction was performed on germinal vesicle andIVMMII oocytes, aswell as in in vitro fertilised and cultured two-, four-, eight- and 12/16-cell embryos, morulae and blastocysts. Quantification of gene expression by real-time polymerase chain reaction showed the highest abundance of all transcripts analysed in the immature oocyte. During the following stages of preimplantation development, the mRNAs examined exhibited different patterns of expression, but often significant decreases were observed during maturation and maternal–embryonic transition. The transcription of the four genes did not resume with activation of the genome

The expression patterns of four maternal effect genes (MEG), namely zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), were determined in ovine oocytes and in vitro-produced preimplantation embryos. The existence of ZAR1 and MATER in ovine species has not been reported previously. Reverse transcription-polymerase chain reaction was performed on germinal vesicle and IVM MII oocytes, as well as in in vitro fertilised and cultured two-, four-, eight- and 12/16-cell embryos, morulae and blastocysts. Quantification of gene expression by real-time polymerase chain reaction showed the highest abundance of all transcripts analysed in the immature oocyte. During the following stages of preimplantation development, the mRNAs examined exhibited different patterns of expression, but often significant decreases were observed during maturation and maternal-embryonic transition. The transcription of the four genes did not resume with activation of the genome

Expression pattern of zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) genes in ovine oocytes and in vitro-produced preimplantation embryos / Bebbere, D; Bogliolo, Luisa; Ariu, F; Fois, S; Leoni, Giovanni Giuseppe; Tore, S; Succu, Sara; Berlinguer, Fiammetta; Naitana, Salvatore; Ledda, Sergio. - In: REPRODUCTION FERTILITY AND DEVELOPMENT. - ISSN 1031-3613. - 20:8(2008), pp. 908-915. [10.1071/RD08095]

Expression pattern of zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) genes in ovine oocytes and in vitro-produced preimplantation embryos

Bebbere D;BOGLIOLO, Luisa;LEONI, Giovanni Giuseppe;SUCCU, Sara;BERLINGUER, Fiammetta;NAITANA, Salvatore;LEDDA, Sergio
2008-01-01

Abstract

The expression patterns of four maternal effect genes (MEG), namely zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15),were determined in ovine oocytes and in vitro-produced preimplantation embryos. The existence of ZAR1 and MATER in ovine species has not been reported previously. Reverse transcription–polymerase chain reaction was performed on germinal vesicle andIVMMII oocytes, aswell as in in vitro fertilised and cultured two-, four-, eight- and 12/16-cell embryos, morulae and blastocysts. Quantification of gene expression by real-time polymerase chain reaction showed the highest abundance of all transcripts analysed in the immature oocyte. During the following stages of preimplantation development, the mRNAs examined exhibited different patterns of expression, but often significant decreases were observed during maturation and maternal–embryonic transition. The transcription of the four genes did not resume with activation of the genome
2008
The expression patterns of four maternal effect genes (MEG), namely zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), were determined in ovine oocytes and in vitro-produced preimplantation embryos. The existence of ZAR1 and MATER in ovine species has not been reported previously. Reverse transcription-polymerase chain reaction was performed on germinal vesicle and IVM MII oocytes, as well as in in vitro fertilised and cultured two-, four-, eight- and 12/16-cell embryos, morulae and blastocysts. Quantification of gene expression by real-time polymerase chain reaction showed the highest abundance of all transcripts analysed in the immature oocyte. During the following stages of preimplantation development, the mRNAs examined exhibited different patterns of expression, but often significant decreases were observed during maturation and maternal-embryonic transition. The transcription of the four genes did not resume with activation of the genome
Expression pattern of zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) genes in ovine oocytes and in vitro-produced preimplantation embryos / Bebbere, D; Bogliolo, Luisa; Ariu, F; Fois, S; Leoni, Giovanni Giuseppe; Tore, S; Succu, Sara; Berlinguer, Fiammetta; Naitana, Salvatore; Ledda, Sergio. - In: REPRODUCTION FERTILITY AND DEVELOPMENT. - ISSN 1031-3613. - 20:8(2008), pp. 908-915. [10.1071/RD08095]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/45379
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact