The microtubular network of neurons is involved in several functions such as formation and tropism of cellular processes, cell division and intracellular transport. A lot of evidences testify that the microtubular network of neurons can be impaired by oxidative stress. A condition of oxidative stress is often possible when D-glucose overloads its metabolic pathway, resulting in an increase in reactive oxygen species and subsequent neurological disorders. The aim of this work was to check in undifferentiated mouse neuroblastoma cells (C1300) the possible oxidative effects of D-glucose on microtubules. Using a concentration of 110mM D-glucose, cell morphology, growth rate, viability and catalase activity were seriously altered. Noteworthy, an increase in 3-nitro-L-tyrosine and a downregulation of tubulins was found in D-glucose-exposed cells, whereas another cytoskeletal proteins, namely actin, did not show any changes. In conclusion, microtubular network can be impaired by D-glucose through specific nitrosative effects, suggesting a possible mechanism at the basis of hyperglycemia-induced neuronal damage.

D-GLUCOSE INDUCES MICROTUBULAR CHANGES IN A NEURAL CELL LINE THROUGH THE INCORPORATION OF 3-NITRO-L-TYROSINE INTO TUBULIN / Gadau, Sergio Domenico; Lepore, Gianluca; Zedda, Marco; Manca, P; Chisu, V; Farina, Vittorio. - In: ARCHIVES ITALIENNES DE BIOLOGIE. - ISSN 0003-9829. - 146:2(2008), pp. 107-117.

D-GLUCOSE INDUCES MICROTUBULAR CHANGES IN A NEURAL CELL LINE THROUGH THE INCORPORATION OF 3-NITRO-L-TYROSINE INTO TUBULIN

GADAU, Sergio Domenico;LEPORE, Gianluca;ZEDDA, Marco;FARINA, Vittorio
2008-01-01

Abstract

The microtubular network of neurons is involved in several functions such as formation and tropism of cellular processes, cell division and intracellular transport. A lot of evidences testify that the microtubular network of neurons can be impaired by oxidative stress. A condition of oxidative stress is often possible when D-glucose overloads its metabolic pathway, resulting in an increase in reactive oxygen species and subsequent neurological disorders. The aim of this work was to check in undifferentiated mouse neuroblastoma cells (C1300) the possible oxidative effects of D-glucose on microtubules. Using a concentration of 110mM D-glucose, cell morphology, growth rate, viability and catalase activity were seriously altered. Noteworthy, an increase in 3-nitro-L-tyrosine and a downregulation of tubulins was found in D-glucose-exposed cells, whereas another cytoskeletal proteins, namely actin, did not show any changes. In conclusion, microtubular network can be impaired by D-glucose through specific nitrosative effects, suggesting a possible mechanism at the basis of hyperglycemia-induced neuronal damage.
2008
D-GLUCOSE INDUCES MICROTUBULAR CHANGES IN A NEURAL CELL LINE THROUGH THE INCORPORATION OF 3-NITRO-L-TYROSINE INTO TUBULIN / Gadau, Sergio Domenico; Lepore, Gianluca; Zedda, Marco; Manca, P; Chisu, V; Farina, Vittorio. - In: ARCHIVES ITALIENNES DE BIOLOGIE. - ISSN 0003-9829. - 146:2(2008), pp. 107-117.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/44920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact