Background: The accuracy and consistency of complete-arch digital impressions are fundamental for long-term success of implant-supported rehabilitations. Recently, artificial intelligence (AI)-assisted tools, such as SmartX (Medit Link v3.4.2, MEDIT Corp., Seoul, South of Korea), have been introduced to enhance scan body recognition and data alignment during intraoral scanning. Objective: This in vitro study aimed to evaluate the impact of SmartX on impression accuracy, consistency, operator confidence, and technique sensitivity in complete-arch implant workflows. Methods: Seventy-two digital impressions were recorded on edentulous mandibular models with four dummy implants, using six experimental subgroups based on scan body design (double- or single-wing), scanning technique (occlusal or combined straight/zigzag), and presence/absence of SmartX tool. Each group was scanned by both an expert and a novice operator (n = 6 scans per subgroup). Root mean square (RMS) deviation and scanning time were assessed. Data were tested for normality (Shapiro–Wilk). Parametric tests (t-test, repeated measures ANOVA with Greenhouse–Geisser correction) or non-parametric equivalents (Mann–Whitney U, Friedman) were applied as appropriate. Post hoc comparisons used Tukey HSD or Dunn–Bonferroni tests (α = 0.05). Results: SmartX significantly improved consistency and operator confidence, especially among novices, although it did not yield statistically significant differences in scan accuracy (p > 0.05). The tool mitigated early scanning errors and reduced dependence on operator technique. SmartX also enabled successful library alignment with minimal data; however, scanning time was generally longer with its use, particularly for beginners. Conclusions: While SmartX did not directly enhance trueness, it substantially improved scan reliability and user experience in complete-arch workflows. Its ability to minimize technique sensitivity and improve reproducibility makes it a valuable aid in both training and clinical settings. Further clinical validation is warranted to support its integration into routine practice.
Effectiveness of an AI-Assisted Digital Workflow for Complete-Arch Implant Impressions: An In Vitro Comparative Study / Tallarico, Marco; Qaddomi, Mohammad; De Rosa, Elena; Cacciò, Carlotta; Meloni, Silvio Mario; Gendviliene, Ieva; Att, Wael; Bourgi, Rim; Lumbau, Aurea Maria; Cervino, Gabriele. - In: DENTISTRY JOURNAL. - ISSN 2304-6767. - 13:10(2025). [10.3390/dj13100462]
Effectiveness of an AI-Assisted Digital Workflow for Complete-Arch Implant Impressions: An In Vitro Comparative Study
Tallarico, Marco;Meloni, Silvio Mario;Lumbau, Aurea Maria;
2025-01-01
Abstract
Background: The accuracy and consistency of complete-arch digital impressions are fundamental for long-term success of implant-supported rehabilitations. Recently, artificial intelligence (AI)-assisted tools, such as SmartX (Medit Link v3.4.2, MEDIT Corp., Seoul, South of Korea), have been introduced to enhance scan body recognition and data alignment during intraoral scanning. Objective: This in vitro study aimed to evaluate the impact of SmartX on impression accuracy, consistency, operator confidence, and technique sensitivity in complete-arch implant workflows. Methods: Seventy-two digital impressions were recorded on edentulous mandibular models with four dummy implants, using six experimental subgroups based on scan body design (double- or single-wing), scanning technique (occlusal or combined straight/zigzag), and presence/absence of SmartX tool. Each group was scanned by both an expert and a novice operator (n = 6 scans per subgroup). Root mean square (RMS) deviation and scanning time were assessed. Data were tested for normality (Shapiro–Wilk). Parametric tests (t-test, repeated measures ANOVA with Greenhouse–Geisser correction) or non-parametric equivalents (Mann–Whitney U, Friedman) were applied as appropriate. Post hoc comparisons used Tukey HSD or Dunn–Bonferroni tests (α = 0.05). Results: SmartX significantly improved consistency and operator confidence, especially among novices, although it did not yield statistically significant differences in scan accuracy (p > 0.05). The tool mitigated early scanning errors and reduced dependence on operator technique. SmartX also enabled successful library alignment with minimal data; however, scanning time was generally longer with its use, particularly for beginners. Conclusions: While SmartX did not directly enhance trueness, it substantially improved scan reliability and user experience in complete-arch workflows. Its ability to minimize technique sensitivity and improve reproducibility makes it a valuable aid in both training and clinical settings. Further clinical validation is warranted to support its integration into routine practice.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


