Kaolin from the Donigazza deposit (NW Sardinia, Italy) was used to investigate the mechanisms of zeolite crystallization under alkaline hydrothermal conditions. The starting material, composed mainly of kaolinite and opal-CT with minor quartz and low iron content, was reacted with NaOH solutions (1–5 mol L−1) at 100 ◦C for 12–168 h. XRD analyses revealed the formation of zeolitic and related phases, including NaP1, NaP2, analcime, sodalite, and cancrinite, with zeolite contents reaching up to 100%. The extent of kaolinite dissolution varied with both NaOH concentration and reaction time, with complete transformation occurring at ≥3 mol L−1 and ≥48 h. SEM imaging showed idiomorphic crystals (100 nm–10 μm) and globular nanoparticles (<50 nm), likely Na-Al-Si gels. Phase distribution reflected evolving solution chemistry, particularly changes in the Si/Al ratio due to differential dissolution of opal-CT and kaolinite. Crystallization proceeded via both classical (monomer addition) and non-classical (particle attachment) pathways, influenced by supersaturation, gel composition, and reaction kinetics. The transition from NaP1 to NaP2, and the development of metastable phases, indicate kinetic control consistent with Ostwald’s step rule. These results provide insights into the complex dynamics of zeolite formation from natural aluminosilicate precursors in alkaline environments.

Mechanism of Hydrothermal Zeolite Crystallization from Kaolin in Concentrated NaOH Solutions (1–5 M): Formation of NaP1, NaP2, Analcime, Sodalite and Cancrinite / Mameli, Paola; Fiore, Ambra M.; Fiore, Saverio; Huertas, F. Javier. - In: CRYSTALS. - ISSN 2073-4352. - 15:11(2025), pp. 1-18. [10.3390/cryst15110980]

Mechanism of Hydrothermal Zeolite Crystallization from Kaolin in Concentrated NaOH Solutions (1–5 M): Formation of NaP1, NaP2, Analcime, Sodalite and Cancrinite

Mameli, Paola;
2025-01-01

Abstract

Kaolin from the Donigazza deposit (NW Sardinia, Italy) was used to investigate the mechanisms of zeolite crystallization under alkaline hydrothermal conditions. The starting material, composed mainly of kaolinite and opal-CT with minor quartz and low iron content, was reacted with NaOH solutions (1–5 mol L−1) at 100 ◦C for 12–168 h. XRD analyses revealed the formation of zeolitic and related phases, including NaP1, NaP2, analcime, sodalite, and cancrinite, with zeolite contents reaching up to 100%. The extent of kaolinite dissolution varied with both NaOH concentration and reaction time, with complete transformation occurring at ≥3 mol L−1 and ≥48 h. SEM imaging showed idiomorphic crystals (100 nm–10 μm) and globular nanoparticles (<50 nm), likely Na-Al-Si gels. Phase distribution reflected evolving solution chemistry, particularly changes in the Si/Al ratio due to differential dissolution of opal-CT and kaolinite. Crystallization proceeded via both classical (monomer addition) and non-classical (particle attachment) pathways, influenced by supersaturation, gel composition, and reaction kinetics. The transition from NaP1 to NaP2, and the development of metastable phases, indicate kinetic control consistent with Ostwald’s step rule. These results provide insights into the complex dynamics of zeolite formation from natural aluminosilicate precursors in alkaline environments.
2025
Mechanism of Hydrothermal Zeolite Crystallization from Kaolin in Concentrated NaOH Solutions (1–5 M): Formation of NaP1, NaP2, Analcime, Sodalite and Cancrinite / Mameli, Paola; Fiore, Ambra M.; Fiore, Saverio; Huertas, F. Javier. - In: CRYSTALS. - ISSN 2073-4352. - 15:11(2025), pp. 1-18. [10.3390/cryst15110980]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/373849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact