Objective: This study aims to critically review and synthesize the existing literature on the use of voice analysis in assessing nasal obstruction, with a particular focus on acoustic parameters. Data sources: PubMed, Scopus, Web of Science, Ovid Medline, and Science Direct. Review methods: A comprehensive literature search was conducted without any restrictions on publication year, employing Boolean search techniques. The selection and review process of the studies followed PRISMA guidelines. The inclusion criteria comprised studies with participants aged 18 years and older who had nasal obstruction evaluated using acoustic voice analysis parameters, along with objective and/or subjective methods for assessing nasal obstruction. Results: Of the 174 abstracts identified, 118 were screened after the removal of duplicates. The full texts of 37 articles were reviewed. Only 10 studies met inclusion criteria. The majority of these studies found no significant correlations between voice parameters and nasal obstruction. Among the various acoustic parameters examined, shimmer was the most consistently affected, with statistically significant changes identified in three independent studies. A smaller number of studies reported notable findings for fundamental frequency (F0) and noise-related measures such as NHR/HNR. Conclusion: This systematic review critically evaluates existing studies on the use of voice analysis for assessing and monitoring nasal obstruction and hyponasality. The current evidence remains limited, as most investigations predominantly focus on glottic sound and dysphonia, with insufficient attention to the influence of the vocal tract, particularly the nasal cavities, on voice production. A notable gap exists in the integration of advanced analytical approaches, such as machine learning, in this field. Future research should focus on the use of advanced analytical approaches to specifically extrapolate the contribution of nasal resonance to voice thus defining the specific parameters in the voice spectrogram that can give precise information on nasal obstruction.
Acoustic Voice Analysis as a Tool for Assessing Nasal Obstruction: A Systematic Review / Yesilli-Puzella, G.; Degni, E.; Crescio, C.; Bracciale, L.; Loreti, P.; Rizzo, D.; Bussu, F.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 15:15(2025). [10.3390/app15158423]
Acoustic Voice Analysis as a Tool for Assessing Nasal Obstruction: A Systematic Review
Degni E.;Crescio C.;Rizzo D.;Bussu F.
2025-01-01
Abstract
Objective: This study aims to critically review and synthesize the existing literature on the use of voice analysis in assessing nasal obstruction, with a particular focus on acoustic parameters. Data sources: PubMed, Scopus, Web of Science, Ovid Medline, and Science Direct. Review methods: A comprehensive literature search was conducted without any restrictions on publication year, employing Boolean search techniques. The selection and review process of the studies followed PRISMA guidelines. The inclusion criteria comprised studies with participants aged 18 years and older who had nasal obstruction evaluated using acoustic voice analysis parameters, along with objective and/or subjective methods for assessing nasal obstruction. Results: Of the 174 abstracts identified, 118 were screened after the removal of duplicates. The full texts of 37 articles were reviewed. Only 10 studies met inclusion criteria. The majority of these studies found no significant correlations between voice parameters and nasal obstruction. Among the various acoustic parameters examined, shimmer was the most consistently affected, with statistically significant changes identified in three independent studies. A smaller number of studies reported notable findings for fundamental frequency (F0) and noise-related measures such as NHR/HNR. Conclusion: This systematic review critically evaluates existing studies on the use of voice analysis for assessing and monitoring nasal obstruction and hyponasality. The current evidence remains limited, as most investigations predominantly focus on glottic sound and dysphonia, with insufficient attention to the influence of the vocal tract, particularly the nasal cavities, on voice production. A notable gap exists in the integration of advanced analytical approaches, such as machine learning, in this field. Future research should focus on the use of advanced analytical approaches to specifically extrapolate the contribution of nasal resonance to voice thus defining the specific parameters in the voice spectrogram that can give precise information on nasal obstruction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


