Extended-spectrum β-lactamase (ESBL)-producing extraintestinal pathogenic Escherichia coli (ExPEC), particularly high-risk lineages, are responsible for severe infections and increased mortality and hospital costs worldwide, with a major burden in low-income countries. Here we determined the antimicrobial susceptibility and performed whole-genome sequencing of E. coli isolates from extraintestinal infections of patients during 2017–2018 at Maputo Central Hospital (Mozambique). Multidrug resistance was displayed by 71% of isolates (17/24). All isolates resistant to cefotaxime and ceftazidime were positive for ESBL genes (16/24; 67%) and were co-resistant to amoxicillin/clavulanate (14/16; 88%), piperacillin/tazobactam (8/16; 50%), gentamicin (12/16; 75%), trimethoprim/sulfamethoxazole (15/16; 94%) and ciprofloxacin (11/16; 69%). Several major high-risk ExPEC lineages were identified, such as H30Rx-ST131, fimH41-ST131, H24Rx-ST410, ST617, ST361 and ST69 harbouring blaCTX-M-15, and H30R-ST131, ST38 and ST457 carrying blaCTX-M-27. Dissemination of CTX-M transposition units (ISEcp1–blaCTX-M-15–orf477 and ISEcp1–blaCTX-M-27–IS903B) among different sequence types could be occurring through the mobility of IncF plasmids. Additionally, all H24Rx-ST410 isolates carried ISEcp1-mediated blaCMY-2 AmpC and specific mutations in PBP3/OmpC proteins, potentially contributing to carbapenem resistance even in the absence of carbapenemase genes. Genome analysis highlighted a high assortment of ExPEC/UPEC virulence‐associated genes mainly involved in adhesion, invasion, iron uptake and secretory systems among isolates, and an ExPEC/EAEC hybrid pathotype (fimH27-ST131_O18-ac:H4) showing the highest virulence gene content. cgMLST showed clonality and closely related isolates, particularly among ST131 and ST410, suggesting hospital-acquired infections and long-term ward persistence. Our study provides new insights into ExPEC clones, urging measures to prevent and contain their diffusion in this hospital and Mozambique.
High-risk lineages among extended-spectrum β-lactamase-producing Escherichia coli from extraintestinal infections in Maputo Central Hospital, Mozambique / Santona, A.; Sumbana, J. J.; Fiamma, M.; Deligios, M.; Taviani, E.; Simbine, S. E.; Zimba, T.; Sacarlal, J.; Rubino, S.; Paglietti, B.. - In: INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS. - ISSN 0924-8579. - 60:4(2022). [10.1016/j.ijantimicag.2022.106649]
High-risk lineages among extended-spectrum β-lactamase-producing Escherichia coli from extraintestinal infections in Maputo Central Hospital, Mozambique
Fiamma M.;Taviani E.;Rubino S.;Paglietti B.
2022-01-01
Abstract
Extended-spectrum β-lactamase (ESBL)-producing extraintestinal pathogenic Escherichia coli (ExPEC), particularly high-risk lineages, are responsible for severe infections and increased mortality and hospital costs worldwide, with a major burden in low-income countries. Here we determined the antimicrobial susceptibility and performed whole-genome sequencing of E. coli isolates from extraintestinal infections of patients during 2017–2018 at Maputo Central Hospital (Mozambique). Multidrug resistance was displayed by 71% of isolates (17/24). All isolates resistant to cefotaxime and ceftazidime were positive for ESBL genes (16/24; 67%) and were co-resistant to amoxicillin/clavulanate (14/16; 88%), piperacillin/tazobactam (8/16; 50%), gentamicin (12/16; 75%), trimethoprim/sulfamethoxazole (15/16; 94%) and ciprofloxacin (11/16; 69%). Several major high-risk ExPEC lineages were identified, such as H30Rx-ST131, fimH41-ST131, H24Rx-ST410, ST617, ST361 and ST69 harbouring blaCTX-M-15, and H30R-ST131, ST38 and ST457 carrying blaCTX-M-27. Dissemination of CTX-M transposition units (ISEcp1–blaCTX-M-15–orf477 and ISEcp1–blaCTX-M-27–IS903B) among different sequence types could be occurring through the mobility of IncF plasmids. Additionally, all H24Rx-ST410 isolates carried ISEcp1-mediated blaCMY-2 AmpC and specific mutations in PBP3/OmpC proteins, potentially contributing to carbapenem resistance even in the absence of carbapenemase genes. Genome analysis highlighted a high assortment of ExPEC/UPEC virulence‐associated genes mainly involved in adhesion, invasion, iron uptake and secretory systems among isolates, and an ExPEC/EAEC hybrid pathotype (fimH27-ST131_O18-ac:H4) showing the highest virulence gene content. cgMLST showed clonality and closely related isolates, particularly among ST131 and ST410, suggesting hospital-acquired infections and long-term ward persistence. Our study provides new insights into ExPEC clones, urging measures to prevent and contain their diffusion in this hospital and Mozambique.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.