Introduction: The ESCPM group (Enterobacter species including Klebsiella aerogenes - formerly Enterobacter aerogenes, Serratia species, Citrobacter freundii complex, Providencia species and Morganella morganii) has not yet been incorporated into systematic surveillance programs. Methods: We conducted a multicentre retrospective observational study analysing all ESCPM strains isolated from blood cultures in 27 European hospitals over a 3-year period (2020–2022). Diagnostic approach, epidemiology, and antimicrobial susceptibility were investigated. Results: Our study comprised 6,774 ESCPM isolates. MALDI-TOF coupled to mass spectrometry was the predominant technique for bacterial identification. Susceptibility to new β-lactam/β-lactamase inhibitor combinations and confirmation of AmpC overproduction were routinely tested in 33.3% and 29.6% of the centres, respectively. The most prevalent species were E. cloacae complex (44.8%) and S. marcescens (22.7%). Overall, third-generation cephalosporins (3GC), combined third- and fourth-generation cephalosporins (3GC + 4GC) and carbapenems resistance phenotypes were observed in 15.7%, 4.6%, and 9.5% of the isolates, respectively. AmpC overproduction was the most prevalent resistance mechanism detected (15.8%). Among carbapenemase-producers, carbapenemase type was provided in 44.4% of the isolates, VIM- (22.9%) and OXA-48-enzyme (16%) being the most frequently detected. E. cloacae complex, K. aerogenes and Providencia species exhibited the most notable cumulative antimicrobial resistance profiles, with the former displaying 3GC, combined 3GC + 4GC and carbapenems resistance phenotypes in 15.2%, 7.4%, and 12.8% of the isolates, respectively. K. aerogenes showed the highest rate of both 3GC resistant phenotype (29.8%) and AmpC overproduction (32.1%), while Providencia species those of both carbapenems resistance phenotype (42.7%) and carbapenemase production (29.4%). ESCPM isolates exhibiting both 3GC and combined 3GC + 4GC resistance phenotypes displayed high susceptibility to ceftazidime/avibactam (98.2% and 95.7%, respectively) and colistin (90.3% and 90.7%, respectively). Colistin emerged as the most active drug against ESCPM species (except those intrinsically resistant) displaying both carbapenems resistance phenotype (85.8%) and carbapenemase production (97.8%). Conclusions: This study presented a current analysis of ESCPM species epidemiology in Europe, providing insights to inform current antibiotic treatments and guide strategies for antimicrobial stewardship and diagnostics.

Enterobacterales carrying chromosomal AmpC β-lactamases in Europe (EuESCPM): Epidemiology and antimicrobial resistance burden from a cohort of 27 hospitals, 2020–2022 / Boattini, M.; Bianco, G.; Llorente, L. I.; Acero, L. A.; Nunes, D.; Seruca, M.; Mendes, V. S.; Almeida, A.; Bastos, P.; Rodriguez-Villodres, A.; Gascon, A. G.; Halperin, A. V.; Canton, R.; Escartin, M. N. L.; Gonzalez-Lopez, J. J.; Floch, P.; Massip, C.; Chainier, D.; Barraud, O.; Dortet, L.; Cuzon, G.; Zancanaro, C.; Mizrahi, A.; Schade, R.; Rasmussen, A. N.; Schonning, K.; Hamprecht, A.; Schaffarczyk, L.; Glockner, S.; Rodel, J.; Kristof, K.; Balonyi, A.; Mancini, S.; Quiblier, C.; Fasciana, T.; Giammanco, A.; Paglietti, B.; Rubino, S.; Budimir, A.; Bedenic, B.; Rubic, Z.; Marinovic, J.; Gartzonika, K.; Christaki, E.; Mavromanolaki, V. E.; Maraki, S.; Yalcin, T. Y.; Azap, O. K.; Licker, M.; Musuroi, C.; Talapan, D.; Vrancianu, C. O.; Comini, S.; Zalas-Wiecek, P.; Michalska, A.; Cavallo, R.; Melo Cristino, J.; Costa, C.. - In: INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS. - ISSN 0924-8579. - 63:5(2024). [10.1016/j.ijantimicag.2024.107115]

Enterobacterales carrying chromosomal AmpC β-lactamases in Europe (EuESCPM): Epidemiology and antimicrobial resistance burden from a cohort of 27 hospitals, 2020–2022

Mancini S.;Paglietti B.;Rubino S.;
2024-01-01

Abstract

Introduction: The ESCPM group (Enterobacter species including Klebsiella aerogenes - formerly Enterobacter aerogenes, Serratia species, Citrobacter freundii complex, Providencia species and Morganella morganii) has not yet been incorporated into systematic surveillance programs. Methods: We conducted a multicentre retrospective observational study analysing all ESCPM strains isolated from blood cultures in 27 European hospitals over a 3-year period (2020–2022). Diagnostic approach, epidemiology, and antimicrobial susceptibility were investigated. Results: Our study comprised 6,774 ESCPM isolates. MALDI-TOF coupled to mass spectrometry was the predominant technique for bacterial identification. Susceptibility to new β-lactam/β-lactamase inhibitor combinations and confirmation of AmpC overproduction were routinely tested in 33.3% and 29.6% of the centres, respectively. The most prevalent species were E. cloacae complex (44.8%) and S. marcescens (22.7%). Overall, third-generation cephalosporins (3GC), combined third- and fourth-generation cephalosporins (3GC + 4GC) and carbapenems resistance phenotypes were observed in 15.7%, 4.6%, and 9.5% of the isolates, respectively. AmpC overproduction was the most prevalent resistance mechanism detected (15.8%). Among carbapenemase-producers, carbapenemase type was provided in 44.4% of the isolates, VIM- (22.9%) and OXA-48-enzyme (16%) being the most frequently detected. E. cloacae complex, K. aerogenes and Providencia species exhibited the most notable cumulative antimicrobial resistance profiles, with the former displaying 3GC, combined 3GC + 4GC and carbapenems resistance phenotypes in 15.2%, 7.4%, and 12.8% of the isolates, respectively. K. aerogenes showed the highest rate of both 3GC resistant phenotype (29.8%) and AmpC overproduction (32.1%), while Providencia species those of both carbapenems resistance phenotype (42.7%) and carbapenemase production (29.4%). ESCPM isolates exhibiting both 3GC and combined 3GC + 4GC resistance phenotypes displayed high susceptibility to ceftazidime/avibactam (98.2% and 95.7%, respectively) and colistin (90.3% and 90.7%, respectively). Colistin emerged as the most active drug against ESCPM species (except those intrinsically resistant) displaying both carbapenems resistance phenotype (85.8%) and carbapenemase production (97.8%). Conclusions: This study presented a current analysis of ESCPM species epidemiology in Europe, providing insights to inform current antibiotic treatments and guide strategies for antimicrobial stewardship and diagnostics.
2024
Enterobacterales carrying chromosomal AmpC β-lactamases in Europe (EuESCPM): Epidemiology and antimicrobial resistance burden from a cohort of 27 hospitals, 2020–2022 / Boattini, M.; Bianco, G.; Llorente, L. I.; Acero, L. A.; Nunes, D.; Seruca, M.; Mendes, V. S.; Almeida, A.; Bastos, P.; Rodriguez-Villodres, A.; Gascon, A. G.; Halperin, A. V.; Canton, R.; Escartin, M. N. L.; Gonzalez-Lopez, J. J.; Floch, P.; Massip, C.; Chainier, D.; Barraud, O.; Dortet, L.; Cuzon, G.; Zancanaro, C.; Mizrahi, A.; Schade, R.; Rasmussen, A. N.; Schonning, K.; Hamprecht, A.; Schaffarczyk, L.; Glockner, S.; Rodel, J.; Kristof, K.; Balonyi, A.; Mancini, S.; Quiblier, C.; Fasciana, T.; Giammanco, A.; Paglietti, B.; Rubino, S.; Budimir, A.; Bedenic, B.; Rubic, Z.; Marinovic, J.; Gartzonika, K.; Christaki, E.; Mavromanolaki, V. E.; Maraki, S.; Yalcin, T. Y.; Azap, O. K.; Licker, M.; Musuroi, C.; Talapan, D.; Vrancianu, C. O.; Comini, S.; Zalas-Wiecek, P.; Michalska, A.; Cavallo, R.; Melo Cristino, J.; Costa, C.. - In: INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS. - ISSN 0924-8579. - 63:5(2024). [10.1016/j.ijantimicag.2024.107115]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/328057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact