The circadian clock is a highly conserved cell-autonomous mechanism that directs daily rhythms in most aspects of biology. Daily entrainment by environmental signals, notably light, is essential for its function. However, our understanding of the mechanisms and the evolution of photic entrainment remains incomplete. Fish represent attractive models for exploring how light regulates the circadian clock due to the direct light sensitivity of their peripheral clocks. Central to this property is the light induced expression of clock genes that is mediated by D-box enhancer elements. Here, using zebrafish cells, we reveal that the light responsive D-box enhancer serves as a nuclear target for reactive oxygen species (ROS). We demonstrate that exposure to short wavelengths of visible light triggers increases in ROS levels via NADPH oxidase activity. Elevated ROS activates the JNK and p38 MAP kinases and in turn, induces clock gene expression via the D-box. In blind cavefish and mammals, where peripheral clocks are no longer entrained by direct illumination, ROS levels are still increased upon light exposure. However, in these species ROS no longer induces D-box driven clock gene transcription. Thus, during evolution, alterations in ROS-responsive signal transduction pathways underlie fundamental changes in peripheral clock photoentrainment.

Evolution shapes the responsiveness of the D-box enhancer element to light and reactive oxygen species in vertebrates / Pagano, C.; Siauciunaite, R.; Idda, M. L.; Ruggiero, G.; Ceinos, R. M.; Pagano, M.; Frigato, E.; Bertolucci, C.; Foulkes, N. S.; Vallone, D.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 8:1(2018). [10.1038/s41598-018-31570-8]

Evolution shapes the responsiveness of the D-box enhancer element to light and reactive oxygen species in vertebrates

Idda M. L.;
2018-01-01

Abstract

The circadian clock is a highly conserved cell-autonomous mechanism that directs daily rhythms in most aspects of biology. Daily entrainment by environmental signals, notably light, is essential for its function. However, our understanding of the mechanisms and the evolution of photic entrainment remains incomplete. Fish represent attractive models for exploring how light regulates the circadian clock due to the direct light sensitivity of their peripheral clocks. Central to this property is the light induced expression of clock genes that is mediated by D-box enhancer elements. Here, using zebrafish cells, we reveal that the light responsive D-box enhancer serves as a nuclear target for reactive oxygen species (ROS). We demonstrate that exposure to short wavelengths of visible light triggers increases in ROS levels via NADPH oxidase activity. Elevated ROS activates the JNK and p38 MAP kinases and in turn, induces clock gene expression via the D-box. In blind cavefish and mammals, where peripheral clocks are no longer entrained by direct illumination, ROS levels are still increased upon light exposure. However, in these species ROS no longer induces D-box driven clock gene transcription. Thus, during evolution, alterations in ROS-responsive signal transduction pathways underlie fundamental changes in peripheral clock photoentrainment.
2018
Evolution shapes the responsiveness of the D-box enhancer element to light and reactive oxygen species in vertebrates / Pagano, C.; Siauciunaite, R.; Idda, M. L.; Ruggiero, G.; Ceinos, R. M.; Pagano, M.; Frigato, E.; Bertolucci, C.; Foulkes, N. S.; Vallone, D.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 8:1(2018). [10.1038/s41598-018-31570-8]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/328054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact