Let omega$\Omega$ be a bounded domain in R2$\mathbb {R}<^>2$ with smooth boundary partial differential omega$\partial \Omega$, and let omega h$\omega _h$ be the set of points in omega$\Omega$ whose distance from the boundary is smaller than h$h$. We prove that the eigenvalues of the biharmonic operator on omega h$\omega _h$ with Neumann boundary conditions converge to the eigenvalues of a limiting problem in the form of a system of differential equations on partial differential omega$\partial \Omega$.

On the eigenvalues of the biharmonic operator with Neumann boundary conditions on a thin set / Ferraresso, F.; Provenzano, L.. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 55:3(2023), pp. 1154-1177. [10.1112/blms.12781]

On the eigenvalues of the biharmonic operator with Neumann boundary conditions on a thin set

Ferraresso F.;
2023-01-01

Abstract

Let omega$\Omega$ be a bounded domain in R2$\mathbb {R}<^>2$ with smooth boundary partial differential omega$\partial \Omega$, and let omega h$\omega _h$ be the set of points in omega$\Omega$ whose distance from the boundary is smaller than h$h$. We prove that the eigenvalues of the biharmonic operator on omega h$\omega _h$ with Neumann boundary conditions converge to the eigenvalues of a limiting problem in the form of a system of differential equations on partial differential omega$\partial \Omega$.
2023
On the eigenvalues of the biharmonic operator with Neumann boundary conditions on a thin set / Ferraresso, F.; Provenzano, L.. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 55:3(2023), pp. 1154-1177. [10.1112/blms.12781]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/327629
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact