: Primary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICCA). Combined hepatocellular- cholangiocarcinomas (cHCC-CCA) exhibit equivocal or mixed features of both, causing diagnostic uncertainty and difficulty in determining proper management. Here, we perform a comprehensive deep learning-based phenotyping of multiple cohorts of patients. We show that deep learning can reproduce the diagnosis of HCC vs. CCA with a high performance. We analyze a series of 405 cHCC-CCA patients and demonstrate that the model can reclassify the tumors as HCC or ICCA, and that the predictions are consistent with clinical outcomes, genetic alterations and in situ spatial gene expression profiling. This type of approach could improve treatment decisions and ultimately clinical outcome for patients with rare and biphenotypic cancers such as cHCC-CCA.

Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma / Calderaro, Julien; Ghaffari Laleh, Narmin; Zeng, Qinghe; Maille, Pascale; Favre, Loetitia; Pujals, Anaïs; Klein, Christophe; Bazille, Céline; Heij, Lara R; Uguen, Arnaud; Luedde, Tom; Di Tommaso, Luca; Beaufrère, Aurélie; Chatain, Augustin; Gastineau, Delphine; Nguyen, Cong Trung; Nguyen-Canh, Hiep; Thi, Khuyen Nguyen; Gnemmi, Viviane; Graham, Rondell P; Charlotte, Frédéric; Wendum, Dominique; Vij, Mukul; Allende, Daniela S; Aucejo, Federico; Diaz, Alba; Rivière, Benjamin; Herrero, Astrid; Evert, Katja; Calvisi, Diego Francesco; Augustin, Jérémy; Leow, Wei Qiang; Leung, Howard Ho Wai; Boleslawski, Emmanuel; Rela, Mohamed; François, Arnaud; Cha, Anthony Wing-Hung; Forner, Alejandro; Reig, Maria; Allaire, Manon; Scatton, Olivier; Chatelain, Denis; Boulagnon-Rombi, Camille; Sturm, Nathalie; Menahem, Benjamin; Frouin, Eric; Tougeron, David; Tournigand, Christophe; Kempf, Emmanuelle; Kim, Haeryoung; Ningarhari, Massih; Michalak-Provost, Sophie; Gopal, Purva; Brustia, Raffaele; Vibert, Eric; Schulze, Kornelius; Rüther, Darius F; Weidemann, Sören A; Rhaiem, Rami; Pawlotsky, Jean-Michel; Zhang, Xuchen; Luciani, Alain; Mulé, Sébastien; Laurent, Alexis; Amaddeo, Giuliana; Regnault, Hélène; De Martin, Eleonora; Sempoux, Christine; Navale, Pooja; Westerhoff, Maria; Lo, Regina Cheuk-Lam; Bednarsch, Jan; Gouw, Annette; Guettier, Catherine; Lequoy, Marie; Harada, Kenichi; Sripongpun, Pimsiri; Wetwittayaklang, Poowadon; Loménie, Nicolas; Tantipisit, Jarukit; Kaewdech, Apichat; Shen, Jeanne; Paradis, Valérie; Caruso, Stefano; Kather, Jakob Nikolas. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 14:1(2023), p. 8290. [10.1038/s41467-023-43749-3]

Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma

Calvisi, Diego Francesco
Writing – Review & Editing
;
2023-01-01

Abstract

: Primary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICCA). Combined hepatocellular- cholangiocarcinomas (cHCC-CCA) exhibit equivocal or mixed features of both, causing diagnostic uncertainty and difficulty in determining proper management. Here, we perform a comprehensive deep learning-based phenotyping of multiple cohorts of patients. We show that deep learning can reproduce the diagnosis of HCC vs. CCA with a high performance. We analyze a series of 405 cHCC-CCA patients and demonstrate that the model can reclassify the tumors as HCC or ICCA, and that the predictions are consistent with clinical outcomes, genetic alterations and in situ spatial gene expression profiling. This type of approach could improve treatment decisions and ultimately clinical outcome for patients with rare and biphenotypic cancers such as cHCC-CCA.
2023
Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma / Calderaro, Julien; Ghaffari Laleh, Narmin; Zeng, Qinghe; Maille, Pascale; Favre, Loetitia; Pujals, Anaïs; Klein, Christophe; Bazille, Céline; Heij, Lara R; Uguen, Arnaud; Luedde, Tom; Di Tommaso, Luca; Beaufrère, Aurélie; Chatain, Augustin; Gastineau, Delphine; Nguyen, Cong Trung; Nguyen-Canh, Hiep; Thi, Khuyen Nguyen; Gnemmi, Viviane; Graham, Rondell P; Charlotte, Frédéric; Wendum, Dominique; Vij, Mukul; Allende, Daniela S; Aucejo, Federico; Diaz, Alba; Rivière, Benjamin; Herrero, Astrid; Evert, Katja; Calvisi, Diego Francesco; Augustin, Jérémy; Leow, Wei Qiang; Leung, Howard Ho Wai; Boleslawski, Emmanuel; Rela, Mohamed; François, Arnaud; Cha, Anthony Wing-Hung; Forner, Alejandro; Reig, Maria; Allaire, Manon; Scatton, Olivier; Chatelain, Denis; Boulagnon-Rombi, Camille; Sturm, Nathalie; Menahem, Benjamin; Frouin, Eric; Tougeron, David; Tournigand, Christophe; Kempf, Emmanuelle; Kim, Haeryoung; Ningarhari, Massih; Michalak-Provost, Sophie; Gopal, Purva; Brustia, Raffaele; Vibert, Eric; Schulze, Kornelius; Rüther, Darius F; Weidemann, Sören A; Rhaiem, Rami; Pawlotsky, Jean-Michel; Zhang, Xuchen; Luciani, Alain; Mulé, Sébastien; Laurent, Alexis; Amaddeo, Giuliana; Regnault, Hélène; De Martin, Eleonora; Sempoux, Christine; Navale, Pooja; Westerhoff, Maria; Lo, Regina Cheuk-Lam; Bednarsch, Jan; Gouw, Annette; Guettier, Catherine; Lequoy, Marie; Harada, Kenichi; Sripongpun, Pimsiri; Wetwittayaklang, Poowadon; Loménie, Nicolas; Tantipisit, Jarukit; Kaewdech, Apichat; Shen, Jeanne; Paradis, Valérie; Caruso, Stefano; Kather, Jakob Nikolas. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 14:1(2023), p. 8290. [10.1038/s41467-023-43749-3]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/324272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact