The design of functional coatings for touchscreens and haptic interfaces is of paramount importance for smartphones, tablets, and computers. Among the functional properties, the ability to suppress or eliminate fingerprints from specific surfaces is one of the most critical. We produced photoactivated anti-fingerprint coatings by embedding 2D-SnSe2 nanoflakes in ordered mesoporous titania thin films. The SnSe2 nanostructures were produced by solvent-assisted sonication employing 1-Methyl-2-pyrrolidinone. The combination of SnSe2 and nanocrystalline anatase titania enables the formation of photoactivated heterostructures with an enhanced ability to remove fingerprints from their surface. These results were achieved through careful design of the heterostructure and controlled processing of the films by liquid phase deposition. The self-assembly process is unaffected by the addition of SnSe2, and the titania mesoporous films keep their three-dimensional pore organization. The coating layers show high optical transparency and a homogeneous distribution of SnSe2 within the matrix. An evaluation of photocatalytic activity was performed by observing the degradation of stearic acid and Rhodamine B layers deposited on the photoactive films as a function of radiation exposure time. FTIR and UV-Vis spectroscopies were used for the photodegradation tests. Additionally, infrared imaging was employed to assess the anti-fingerprinting property. The photodegradation process, following pseudo-first-order kinetics, shows a tremendous improvement over bare mesoporous titania films. Furthermore, exposure of the films to sunlight and UV light completely removes the fingerprints, opening the route to several self-cleaning applications.
Bidimensional SnSe2—Mesoporous Ordered Titania Heterostructures for Photocatalytically Activated Anti-Fingerprint Optically Transparent Layers / De Santis, Jessica; Paolucci, Valentina; Stagi, Luigi; Carboni, Davide; Malfatti, Luca; Cantalini, Carlo; Innocenzi, Plinio. - In: NANOMATERIALS. - ISSN 2079-4991. - 13:(2023), p. 1406. [10.3390/nano13081406]
Bidimensional SnSe2—Mesoporous Ordered Titania Heterostructures for Photocatalytically Activated Anti-Fingerprint Optically Transparent Layers
Luigi Stagi;Davide Carboni;Luca Malfatti;Plinio Innocenzi
2023-01-01
Abstract
The design of functional coatings for touchscreens and haptic interfaces is of paramount importance for smartphones, tablets, and computers. Among the functional properties, the ability to suppress or eliminate fingerprints from specific surfaces is one of the most critical. We produced photoactivated anti-fingerprint coatings by embedding 2D-SnSe2 nanoflakes in ordered mesoporous titania thin films. The SnSe2 nanostructures were produced by solvent-assisted sonication employing 1-Methyl-2-pyrrolidinone. The combination of SnSe2 and nanocrystalline anatase titania enables the formation of photoactivated heterostructures with an enhanced ability to remove fingerprints from their surface. These results were achieved through careful design of the heterostructure and controlled processing of the films by liquid phase deposition. The self-assembly process is unaffected by the addition of SnSe2, and the titania mesoporous films keep their three-dimensional pore organization. The coating layers show high optical transparency and a homogeneous distribution of SnSe2 within the matrix. An evaluation of photocatalytic activity was performed by observing the degradation of stearic acid and Rhodamine B layers deposited on the photoactive films as a function of radiation exposure time. FTIR and UV-Vis spectroscopies were used for the photodegradation tests. Additionally, infrared imaging was employed to assess the anti-fingerprinting property. The photodegradation process, following pseudo-first-order kinetics, shows a tremendous improvement over bare mesoporous titania films. Furthermore, exposure of the films to sunlight and UV light completely removes the fingerprints, opening the route to several self-cleaning applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.