IntroductionTobacco brown spot disease caused by Alternaria fungal species is a major threat to tobacco growth and yield. Thus, accurate and rapid detection of tobacco brown spot disease is vital for disease prevention and chemical pesticide inputs. MethodsHere, we propose an improved YOLOX-Tiny network, named YOLO-Tobacco, for the detection of tobacco brown spot disease under open-field scenarios. Aiming to excavate valuable disease features and enhance the integration of different levels of features, thereby improving the ability to detect dense disease spots at different scales, we introduced hierarchical mixed-scale units (HMUs) in the neck network for information interaction and feature refinement between channels. Furthermore, in order to enhance the detection of small disease spots and the robustness of the network, we also introduced convolutional block attention modules (CBAMs) into the neck network. ResultsAs a result, the YOLO-Tobacco network achieved an average precision (AP) of 80.56% on the test set. The AP was 3.22%, 8.99%, and 12.03% higher than that obtained by the classic lightweight detection networks YOLOX-Tiny network, YOLOv5-S network, and YOLOv4-Tiny network, respectively. In addition, the YOLO-Tobacco network also had a fast detection speed of 69 frames per second (FPS). DiscussionTherefore, the YOLO-Tobacco network satisfies both the advantages of high detection accuracy and fast detection speed. It will likely have a positive impact on early monitoring, disease control, and quality assessment in diseased tobacco plants.

Improved YOLOX-Tiny network for detection of tobacco brown spot disease / Lin, Jianwu; Yu, Dianzhi; Pan, Renyong; Cai, Jitong; Liu, Jiaming; Zhang, Licai; Wen, Xingtian; Peng, Xishun; Cernava, Tomislav; Oufensou, Safa; Migheli, Quirico; Chen, Xiaoyulong; Zhang, Xin. - In: FRONTIERS IN PLANT SCIENCE. - ISSN 1664-462X. - 14:(2023), p. 1135105. [10.3389/fpls.2023.1135105]

Improved YOLOX-Tiny network for detection of tobacco brown spot disease

Oufensou, Safa;Migheli, Quirico;
2023-01-01

Abstract

IntroductionTobacco brown spot disease caused by Alternaria fungal species is a major threat to tobacco growth and yield. Thus, accurate and rapid detection of tobacco brown spot disease is vital for disease prevention and chemical pesticide inputs. MethodsHere, we propose an improved YOLOX-Tiny network, named YOLO-Tobacco, for the detection of tobacco brown spot disease under open-field scenarios. Aiming to excavate valuable disease features and enhance the integration of different levels of features, thereby improving the ability to detect dense disease spots at different scales, we introduced hierarchical mixed-scale units (HMUs) in the neck network for information interaction and feature refinement between channels. Furthermore, in order to enhance the detection of small disease spots and the robustness of the network, we also introduced convolutional block attention modules (CBAMs) into the neck network. ResultsAs a result, the YOLO-Tobacco network achieved an average precision (AP) of 80.56% on the test set. The AP was 3.22%, 8.99%, and 12.03% higher than that obtained by the classic lightweight detection networks YOLOX-Tiny network, YOLOv5-S network, and YOLOv4-Tiny network, respectively. In addition, the YOLO-Tobacco network also had a fast detection speed of 69 frames per second (FPS). DiscussionTherefore, the YOLO-Tobacco network satisfies both the advantages of high detection accuracy and fast detection speed. It will likely have a positive impact on early monitoring, disease control, and quality assessment in diseased tobacco plants.
2023
Improved YOLOX-Tiny network for detection of tobacco brown spot disease / Lin, Jianwu; Yu, Dianzhi; Pan, Renyong; Cai, Jitong; Liu, Jiaming; Zhang, Licai; Wen, Xingtian; Peng, Xishun; Cernava, Tomislav; Oufensou, Safa; Migheli, Quirico; Chen, Xiaoyulong; Zhang, Xin. - In: FRONTIERS IN PLANT SCIENCE. - ISSN 1664-462X. - 14:(2023), p. 1135105. [10.3389/fpls.2023.1135105]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/307792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact