This study presents the results of a refined numerical investigation meant at understanding the time-dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides-induced corrosion. The chloride ingress in the cross-section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion-induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite-element method, the loss of reinforcement steel bars cross-section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross-sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns.

Time-dependent cyclic behavior of reinforced concrete bridge columns under chlorides-induced corrosion and rebars buckling / Pelle, A.; Briseghella, B.; Bergami, A. V.; Fiorentino, G.; Giaccu, G. F.; Lavorato, D.; Quaranta, G.; Rasulo, A.; Nuti, C.. - In: STRUCTURAL CONCRETE. - ISSN 1464-4177. - 23:1(2022), pp. 81-103. [10.1002/suco.202100257]

Time-dependent cyclic behavior of reinforced concrete bridge columns under chlorides-induced corrosion and rebars buckling

Giaccu G. F.;
2022-01-01

Abstract

This study presents the results of a refined numerical investigation meant at understanding the time-dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides-induced corrosion. The chloride ingress in the cross-section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion-induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite-element method, the loss of reinforcement steel bars cross-section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross-sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns.
Time-dependent cyclic behavior of reinforced concrete bridge columns under chlorides-induced corrosion and rebars buckling / Pelle, A.; Briseghella, B.; Bergami, A. V.; Fiorentino, G.; Giaccu, G. F.; Lavorato, D.; Quaranta, G.; Rasulo, A.; Nuti, C.. - In: STRUCTURAL CONCRETE. - ISSN 1464-4177. - 23:1(2022), pp. 81-103. [10.1002/suco.202100257]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/298749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact