The spherical micro-cells are a semi-transparent photovoltaic (PV) technology which can contribute to improve the sustainability of greenhouse systems. Previous prototypes were tested in laboratory conditions, but the size was not suitable for the greenhouse roof application. In this work, a new prototype has been developed and tested on a real greenhouse roof. The semi-transparent PV module (STM) was composed by 4800 spherical silicon micro-cells (1.2mm diameter) sandwiched between glass plates and integrated on a greenhouse roof with 26.5° slope. The STM was 910mm long and 610mm wide to match the size of the greenhouse framework. The percentage of the STM area covered with micro-cells was 2.3%, reaching 9.7% considering the metallic conductors. The cell density was 2 cells cm-2 and the measured perpendicular light transmissivity of the semi-transparent area was 73%. The characteristics of the prototype were compared with those of a conventional planar multi-crystalline silicon module (CPM). The module conversion efficiency was steadily around 0.2% over wide incident sunlight angle. The micro-cells never completely eclipse the incident sunlight when observed from more than 1m distance from the roof, keeping the eclipsing level at 9.7%. The yield factor of the STM was slightly higher than the CPM because of the isotropic properties of the spherical cells, which are able to use both the sky-incident and the ground-reflected irradiation for energy production, irrespective of the module slope. The prototype STM is promising for greenhouse roof applications and its performance can be improved by increasing the conversion efficiency.

Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system / Cossu, Marco; Yano, Akira; Li, Zhi; Onoe, Mahiro; Nakamura, Hidetoshi; Matsumoto, Toshinori; Nakata, Josuke. - In: APPLIED ENERGY. - ISSN 1872-9118. - 162:(2016), pp. 1042-1051. [10.1016/j.apenergy.2015.11.002]

Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system

Marco Cossu;Akira Yano
;
2016-01-01

Abstract

The spherical micro-cells are a semi-transparent photovoltaic (PV) technology which can contribute to improve the sustainability of greenhouse systems. Previous prototypes were tested in laboratory conditions, but the size was not suitable for the greenhouse roof application. In this work, a new prototype has been developed and tested on a real greenhouse roof. The semi-transparent PV module (STM) was composed by 4800 spherical silicon micro-cells (1.2mm diameter) sandwiched between glass plates and integrated on a greenhouse roof with 26.5° slope. The STM was 910mm long and 610mm wide to match the size of the greenhouse framework. The percentage of the STM area covered with micro-cells was 2.3%, reaching 9.7% considering the metallic conductors. The cell density was 2 cells cm-2 and the measured perpendicular light transmissivity of the semi-transparent area was 73%. The characteristics of the prototype were compared with those of a conventional planar multi-crystalline silicon module (CPM). The module conversion efficiency was steadily around 0.2% over wide incident sunlight angle. The micro-cells never completely eclipse the incident sunlight when observed from more than 1m distance from the roof, keeping the eclipsing level at 9.7%. The yield factor of the STM was slightly higher than the CPM because of the isotropic properties of the spherical cells, which are able to use both the sky-incident and the ground-reflected irradiation for energy production, irrespective of the module slope. The prototype STM is promising for greenhouse roof applications and its performance can be improved by increasing the conversion efficiency.
2016
Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system / Cossu, Marco; Yano, Akira; Li, Zhi; Onoe, Mahiro; Nakamura, Hidetoshi; Matsumoto, Toshinori; Nakata, Josuke. - In: APPLIED ENERGY. - ISSN 1872-9118. - 162:(2016), pp. 1042-1051. [10.1016/j.apenergy.2015.11.002]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/294744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 67
social impact