Thanks to their low fertilization requirements and high consumer demand, ancient wheats and old durum wheat cultivars represent an attractive option for the marginal areas of Mediterranean environments no longer cultivated due to the low grain yields attainable using modern wheat cultivars. Dual-purpose utilization may increase their value in these cropping systems, but no information is available on the suitability of ancient wheat species to this type of utilization. To fill this gap, Khorasan, einkorn, and emmer wheats, clipped at the terminal spikelet stage or left unclipped, were compared in a two-year field trial. The grains were sown in the month of October, in Sardinia (41°N, 80 m asl), Italy, on low-fertility soils and with low-medium fertilization rates. Einkorn cultivars produced the highest biomass yield (2–3 t ha−1), reflecting the longer time to the onset of the terminal spikelet stage (119–138 days). After clipping, all species recovered their ability to intercept radiation to the levels of the unclipped crops, but clipping lowered their radiation use-efficiency. Grain yield was not penalized by clipping: the increase in the harvest index compensated for the decrease in biomass. Here we show for the first time that ancient wheat species are suitable for dual-purpose utilization (herbage plus grain in the same season) rendering them valuable for marginal areas; this was because the early sowing adopted for dual-purpose utilization allowed them to take full advantage of their lateness in terms of herbage yield, and to bring flowering forward (i.e. make it earlier) so that a satisfactory grain yield was obtained, even under severe water stress. Dual-purpose utilization of ancient wheats increases the sustainability of mixed cropping systems, by making herbage available to animals in a critical period, without decreasing the grain yield attainable after grazing in the same season.
Ancient wheat species are suitable to grain-only and grain plus herbage utilisations in marginal Mediterranean environments / Cadeddu, F.; Motzo, R.; Mureddu, F.; Giunta, F.. - In: AGRONOMY FOR SUSTAINABLE DEVELOPMENT. - ISSN 1774-0746. - 41:2(2021). [10.1007/s13593-021-00670-7]
Ancient wheat species are suitable to grain-only and grain plus herbage utilisations in marginal Mediterranean environments
Cadeddu F.;Motzo R.
;Mureddu F.;Giunta F.
2021-01-01
Abstract
Thanks to their low fertilization requirements and high consumer demand, ancient wheats and old durum wheat cultivars represent an attractive option for the marginal areas of Mediterranean environments no longer cultivated due to the low grain yields attainable using modern wheat cultivars. Dual-purpose utilization may increase their value in these cropping systems, but no information is available on the suitability of ancient wheat species to this type of utilization. To fill this gap, Khorasan, einkorn, and emmer wheats, clipped at the terminal spikelet stage or left unclipped, were compared in a two-year field trial. The grains were sown in the month of October, in Sardinia (41°N, 80 m asl), Italy, on low-fertility soils and with low-medium fertilization rates. Einkorn cultivars produced the highest biomass yield (2–3 t ha−1), reflecting the longer time to the onset of the terminal spikelet stage (119–138 days). After clipping, all species recovered their ability to intercept radiation to the levels of the unclipped crops, but clipping lowered their radiation use-efficiency. Grain yield was not penalized by clipping: the increase in the harvest index compensated for the decrease in biomass. Here we show for the first time that ancient wheat species are suitable for dual-purpose utilization (herbage plus grain in the same season) rendering them valuable for marginal areas; this was because the early sowing adopted for dual-purpose utilization allowed them to take full advantage of their lateness in terms of herbage yield, and to bring flowering forward (i.e. make it earlier) so that a satisfactory grain yield was obtained, even under severe water stress. Dual-purpose utilization of ancient wheats increases the sustainability of mixed cropping systems, by making herbage available to animals in a critical period, without decreasing the grain yield attainable after grazing in the same season.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.