The use of high doses of glycerol as a livestock feed supplement is followed by a rapid increase in plasma concentrations and consequently in plasma osmolality. Moreover, glycerol is a highly diffusible molecule that can readily permeate the red blood cell (RBC) membrane following a concentration gradient. A rise in glycerol plasma concentrations can thus alter RBC homeostasis. The present study aimed at investigating both glycerol osmotic effects on sheep RBCs and their oxidative response under in vitro conditions. Sheep blood samples were suspended in media supplemented with increasing glycerol concentrations (0, 25, 50, 100, 150, 200, 250, 300, 350, 400 mg/dL), which reflected those found in vivo in previous studies, and incubated at 37 °C for 4h. Thereafter, osmolality and hemolysis were determined in spent media, while cell extracts were used to assay intracellular concentration of glycerol, ATP, Ca2+ ions, oxidative stress markers and reactive oxygen species (ROS).The study confirmed that glycerol intracellular concentrations are directly related with its concentration in the incubation media, as well as hemolysis (p < 0.001) which increased significantly at glycerol concentrations higher form 200 mg/dL. ROS intracellular level increased at all glycerol concentration tested (p < 0.01) and total thiols decreased at the highest concentrations. However, RBCs proved to be able to cope by activating their antioxidant defense system. Superoxide dismutase activity indeed increased at the highest glycerol concentrations (p < 0.001), while total antioxidant capacity and malonyldialdehyde, a typical product of lipid peroxidation by ROS, did not show significant changes. Moreover, no alterations in intracellular Ca2+ ions and ATP concentrations were found. In conclusion, glycerol‐induced hemolysis can be related to the induced osmotic stress. In sheep, nutritional treatments should be designed to avoid reaching glycerol circulating concentrations higher than 200 mg/dL.

Effect of media with different glycerol concentrations on sheep red blood cells’ viability in vitro / Pasciu, V.; Sotgiu, F. D.; Porcu, C.; Berlinguer, F.. - In: ANIMALS. - ISSN 2076-2615. - 11:6(2021), p. 1592. [10.3390/ani11061592]

Effect of media with different glycerol concentrations on sheep red blood cells’ viability in vitro

Pasciu V.;Sotgiu F. D.;Porcu C.;Berlinguer F.
2021-01-01

Abstract

The use of high doses of glycerol as a livestock feed supplement is followed by a rapid increase in plasma concentrations and consequently in plasma osmolality. Moreover, glycerol is a highly diffusible molecule that can readily permeate the red blood cell (RBC) membrane following a concentration gradient. A rise in glycerol plasma concentrations can thus alter RBC homeostasis. The present study aimed at investigating both glycerol osmotic effects on sheep RBCs and their oxidative response under in vitro conditions. Sheep blood samples were suspended in media supplemented with increasing glycerol concentrations (0, 25, 50, 100, 150, 200, 250, 300, 350, 400 mg/dL), which reflected those found in vivo in previous studies, and incubated at 37 °C for 4h. Thereafter, osmolality and hemolysis were determined in spent media, while cell extracts were used to assay intracellular concentration of glycerol, ATP, Ca2+ ions, oxidative stress markers and reactive oxygen species (ROS).The study confirmed that glycerol intracellular concentrations are directly related with its concentration in the incubation media, as well as hemolysis (p < 0.001) which increased significantly at glycerol concentrations higher form 200 mg/dL. ROS intracellular level increased at all glycerol concentration tested (p < 0.01) and total thiols decreased at the highest concentrations. However, RBCs proved to be able to cope by activating their antioxidant defense system. Superoxide dismutase activity indeed increased at the highest glycerol concentrations (p < 0.001), while total antioxidant capacity and malonyldialdehyde, a typical product of lipid peroxidation by ROS, did not show significant changes. Moreover, no alterations in intracellular Ca2+ ions and ATP concentrations were found. In conclusion, glycerol‐induced hemolysis can be related to the induced osmotic stress. In sheep, nutritional treatments should be designed to avoid reaching glycerol circulating concentrations higher than 200 mg/dL.
2021
Effect of media with different glycerol concentrations on sheep red blood cells’ viability in vitro / Pasciu, V.; Sotgiu, F. D.; Porcu, C.; Berlinguer, F.. - In: ANIMALS. - ISSN 2076-2615. - 11:6(2021), p. 1592. [10.3390/ani11061592]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/284139
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact