We consider, in an open subset Ω ofRN, energies depending on the perimeter of a subsetEС Ω (or some equivalent surface integral) and on a function u which is defined only onE. We compute the lower semicontinuous envelope of such energies. This relaxation has to take into account the fact that in the limit, the “holes” Ω \Emay collapse into a discontinuity ofu, whose surface will be counted twice in the relaxed energy. We discuss some situations where such energies appear, and give, as an application, a new proof of convergence for an extension of Ambrosio-Tortorelli’s approximation to the Mumford-Shah functional.

A Relaxation result for energies defined on pairs set-function and applications / Solci, Margherita; Braides, Andrea; Chambolle, Antonin. - 13:4(2007), pp. 717-734. [10.1051/cocv:2007032]

A Relaxation result for energies defined on pairs set-function and applications

Solci, Margherita;
2007-01-01

Abstract

We consider, in an open subset Ω ofRN, energies depending on the perimeter of a subsetEС Ω (or some equivalent surface integral) and on a function u which is defined only onE. We compute the lower semicontinuous envelope of such energies. This relaxation has to take into account the fact that in the limit, the “holes” Ω \Emay collapse into a discontinuity ofu, whose surface will be counted twice in the relaxed energy. We discuss some situations where such energies appear, and give, as an application, a new proof of convergence for an extension of Ambrosio-Tortorelli’s approximation to the Mumford-Shah functional.
2007
A Relaxation result for energies defined on pairs set-function and applications / Solci, Margherita; Braides, Andrea; Chambolle, Antonin. - 13:4(2007), pp. 717-734. [10.1051/cocv:2007032]
File in questo prodotto:
File Dimensione Formato  
Braides_A_Articolo_2007_Relaxacation.pdf

accesso aperto

Tipologia: Versione editoriale (versione finale pubblicata)
Licenza: Non specificato
Dimensione 264.98 kB
Formato Adobe PDF
264.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/265072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact