Pteridine reductase (PTR1) is essential for salvage of pterins by parasitic trypanosomatids and is a target for the development of improved therapies. To identify inhibitors ofLeishmania majorandTrypanosoma cruziPTR1, we combined a rapid-screening strategy using a folate-based library with structure-based design. Assays were carried out against folate-dependent enzymes including PTR1, dihydrofolate reductase (DHFR), and thymidylate synthase. Affinity profiling determined selectivity and specificity of a series of quinoxaline and 2,4-diaminopteridine derivatives, and nine compounds showed greater activity against parasite enzymes compared with human enzymes. Compound 6a displayed a Ki of 100 nM toward LmPTR1, and the crystal structure of the LmPTR1:NADPH:6a ternary complex revealed a substrate-like binding mode distinct from that previously observed for similar compounds. A second round of design, synthesis, and assay produced a compound (6b) with a significantly improved Ki (37 nM) against LmPTR1, and the structure of this complex was also determined. Biological evaluation of selected inhibitors was performed against the extracellular forms ofT. cruziandL. major, both wild-type and overexpressing PTR1 lines, as a model for PTR1-driven antifolate drug resistance and the intracellular form ofT. cruzi.An additive profile was observed when PTR1 inhibitors were used in combination with known DHFR inhibitors, and a reduction in toxicity of treatment was observed with respect to administration of a DHFR inhibitor alone. The successful combination of antifolates targeting two enzymes indicates high potential for such an approach in the development of previously undescribed antiparasitic drugs.

Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development / Piras, Sandra; Paglietti, Giuseppe; Hunter, William N.; Loriga, Mario; Tulloch, Lindsay; Gibellini, Federica; Costi, Maria Paola; Corona, Paola; Alleca, Sergio; Cavazzuti, Antonio; Gamarro, Francisco; Mcluskey, Karen; Ferrari, Stefania. - 105:5(2008), pp. 1448-1453. [10.1073/pnas.0704384105]

Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development

Piras, Sandra;Paglietti, Giuseppe;Loriga, Mario;Corona, Paola;Cavazzuti, Antonio;
2008-01-01

Abstract

Pteridine reductase (PTR1) is essential for salvage of pterins by parasitic trypanosomatids and is a target for the development of improved therapies. To identify inhibitors ofLeishmania majorandTrypanosoma cruziPTR1, we combined a rapid-screening strategy using a folate-based library with structure-based design. Assays were carried out against folate-dependent enzymes including PTR1, dihydrofolate reductase (DHFR), and thymidylate synthase. Affinity profiling determined selectivity and specificity of a series of quinoxaline and 2,4-diaminopteridine derivatives, and nine compounds showed greater activity against parasite enzymes compared with human enzymes. Compound 6a displayed a Ki of 100 nM toward LmPTR1, and the crystal structure of the LmPTR1:NADPH:6a ternary complex revealed a substrate-like binding mode distinct from that previously observed for similar compounds. A second round of design, synthesis, and assay produced a compound (6b) with a significantly improved Ki (37 nM) against LmPTR1, and the structure of this complex was also determined. Biological evaluation of selected inhibitors was performed against the extracellular forms ofT. cruziandL. major, both wild-type and overexpressing PTR1 lines, as a model for PTR1-driven antifolate drug resistance and the intracellular form ofT. cruzi.An additive profile was observed when PTR1 inhibitors were used in combination with known DHFR inhibitors, and a reduction in toxicity of treatment was observed with respect to administration of a DHFR inhibitor alone. The successful combination of antifolates targeting two enzymes indicates high potential for such an approach in the development of previously undescribed antiparasitic drugs.
2008
Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development / Piras, Sandra; Paglietti, Giuseppe; Hunter, William N.; Loriga, Mario; Tulloch, Lindsay; Gibellini, Federica; Costi, Maria Paola; Corona, Paola; Alleca, Sergio; Cavazzuti, Antonio; Gamarro, Francisco; Mcluskey, Karen; Ferrari, Stefania. - 105:5(2008), pp. 1448-1453. [10.1073/pnas.0704384105]
File in questo prodotto:
File Dimensione Formato  
Cavazzuti_Articolo_2008_Discovery.pdf

accesso aperto

Tipologia: Versione editoriale (versione finale pubblicata)
Licenza: Non specificato
Dimensione 672 kB
Formato Adobe PDF
672 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/262507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact