The association between cancer and thromboembolic disease is a well-known phenomenon and can contribute significantly to the morbidity and mortality of cancer patients. The spectrum of thromboembolic manifestations in cancer patients includes deep vein thrombosis, pulmonary embolism, but also intravascular disseminated coagulation and abnormalities in the clotting system in the absence of clinical manifestations. Unfractionated heparin (UFH) and particularly low molecular weight heparins (LMWH-s) are widely used for the prevention and treatment of thromboembolic manifestations that commonly accompany malignancies. Malignant growth has also been linked to the activity of heparin-like glycosaminoglycans, to neoangiogenesis, to protease activity, to immune function and gene expression. All these factors contribute in the proliferation and dissemination of malignancies. Heparins may play a role in tumour cell growth and in cancer dissemination. The aims of the study are to review the efficiency of heparins in the prevention and treatment of cancer-related thromboembolic complications, and review the biological effects of heparins. Heparins are effective in reducing the frequency of thromboembolic complications in cancer patients. Meta-analyses comparing unfractionated heparins and LMWH-s for the treatment of deep vein thrombosis have shown better outcome with a reduction of major bleeding complications in patients treated with LMWH-s. LMWH have antitumour effects in animal models of malignancy: heparin oligosaccharides containing less than 10 saccharide residues have been found to inhibit the biological activity of basic fibroblast growth factor (bFGF), whereas heparin fragments with less than 18 saccharide residues have been reported to inhibit the binding of vascular endothelial growth factor (VEGF) to its receptors on endothelial cells. It has been shown that LMWH, in contrast with UFH, can hinder the binding of growth factors to their high-affinity receptors as a result of its smaller size. In vitro heparin fragments of less than 18 saccharide residues reduce the activity of VEGF, and fragments of less than 10 saccharide residues inhibit the activity of bFGF. Small molecular heparin fractions have also been shown to inhibit VEGF- and bFGF-mediated angiogenesis in vivo, in contrast with UFH. Moreover, heparin may influence malignant cell growth through other different interrelated mechanisms: inhibition of (1) heparin-binding growth factors that drive malignant cell growth; (2) tumour cell heparinases that mediate tumour cell invasion and metastasis; (3) cell surface selectin-mediated tumour cell metastasis and blood coagulation. The above evidence, together with favourable pharmaco-properties and with a reduction in major bleeding complications, suggests an important role for LMWH-s in thromboprophylaxis and in the therapy of venous thromboembolism in cancer patients. There is sufficient experimental data to suggest that heparins may interfere with various aspects of cancer proliferation, angiogenesis, and metastasis formation. Large-scale clinical trials are required to determine the clinical impact of the above activities on the natural history of the disease

The heparins and cancer: review of clinical trials and biological properties / Castelli, R; Porro, F; Tarsia, P.. - In: VASCULAR MEDICINE. - ISSN 1358-863X. - 9:3(2004), pp. 205-213.

The heparins and cancer: review of clinical trials and biological properties

Castelli R;
2004-01-01

Abstract

The association between cancer and thromboembolic disease is a well-known phenomenon and can contribute significantly to the morbidity and mortality of cancer patients. The spectrum of thromboembolic manifestations in cancer patients includes deep vein thrombosis, pulmonary embolism, but also intravascular disseminated coagulation and abnormalities in the clotting system in the absence of clinical manifestations. Unfractionated heparin (UFH) and particularly low molecular weight heparins (LMWH-s) are widely used for the prevention and treatment of thromboembolic manifestations that commonly accompany malignancies. Malignant growth has also been linked to the activity of heparin-like glycosaminoglycans, to neoangiogenesis, to protease activity, to immune function and gene expression. All these factors contribute in the proliferation and dissemination of malignancies. Heparins may play a role in tumour cell growth and in cancer dissemination. The aims of the study are to review the efficiency of heparins in the prevention and treatment of cancer-related thromboembolic complications, and review the biological effects of heparins. Heparins are effective in reducing the frequency of thromboembolic complications in cancer patients. Meta-analyses comparing unfractionated heparins and LMWH-s for the treatment of deep vein thrombosis have shown better outcome with a reduction of major bleeding complications in patients treated with LMWH-s. LMWH have antitumour effects in animal models of malignancy: heparin oligosaccharides containing less than 10 saccharide residues have been found to inhibit the biological activity of basic fibroblast growth factor (bFGF), whereas heparin fragments with less than 18 saccharide residues have been reported to inhibit the binding of vascular endothelial growth factor (VEGF) to its receptors on endothelial cells. It has been shown that LMWH, in contrast with UFH, can hinder the binding of growth factors to their high-affinity receptors as a result of its smaller size. In vitro heparin fragments of less than 18 saccharide residues reduce the activity of VEGF, and fragments of less than 10 saccharide residues inhibit the activity of bFGF. Small molecular heparin fractions have also been shown to inhibit VEGF- and bFGF-mediated angiogenesis in vivo, in contrast with UFH. Moreover, heparin may influence malignant cell growth through other different interrelated mechanisms: inhibition of (1) heparin-binding growth factors that drive malignant cell growth; (2) tumour cell heparinases that mediate tumour cell invasion and metastasis; (3) cell surface selectin-mediated tumour cell metastasis and blood coagulation. The above evidence, together with favourable pharmaco-properties and with a reduction in major bleeding complications, suggests an important role for LMWH-s in thromboprophylaxis and in the therapy of venous thromboembolism in cancer patients. There is sufficient experimental data to suggest that heparins may interfere with various aspects of cancer proliferation, angiogenesis, and metastasis formation. Large-scale clinical trials are required to determine the clinical impact of the above activities on the natural history of the disease
2004
The heparins and cancer: review of clinical trials and biological properties / Castelli, R; Porro, F; Tarsia, P.. - In: VASCULAR MEDICINE. - ISSN 1358-863X. - 9:3(2004), pp. 205-213.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/254477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 59
social impact