In this paper, we prove existence of multiple non-radial solutions to the Hardy-Sobolev equation [Formula presented] where N≥3, s∈[0,2), [Formula presented] and [Formula presented]. We extend results of E.N. Dancer, F. Gladiali, M. Grossi (2017) [12] where only the case s=0 is considered. The results specially rely on a careful analysis of the kernel of the linearized operator. Moreover, thanks to monotonicity properties of the solutions, we separate two branches of non-radial solutions.
Bifurcation analysis of the Hardy-Sobolev equation / Bonheure, D.; Casteras, J. -B.; Gladiali, F.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 296:(2021), pp. 759-798. [10.1016/j.jde.2021.06.012]
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Bifurcation analysis of the Hardy-Sobolev equation | |
Autori: | ||
Data di pubblicazione: | 2021 | |
Rivista: | ||
Citazione: | Bifurcation analysis of the Hardy-Sobolev equation / Bonheure, D.; Casteras, J. -B.; Gladiali, F.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 296:(2021), pp. 759-798. [10.1016/j.jde.2021.06.012] | |
Handle: | http://hdl.handle.net/11388/253778 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |