The phenomenon of luminescence enhancement was studied in melamine-Y2O3:Tb hybrids. Terbium doped Y2O3 mesoporous nanowires were synthesized by hydrothermal method. X-ray diffraction patterns and Raman scattering spectra testified the realization of a cubic crystal phase. Organic-inorganic melamine-Y2O3:Tb3+ hybrid system was successfully obtained by vapour deposition method. Vibration Raman active modes of the organic counterpart were investigated in order to verify the achievement of hybrid system. Photoluminescence excitation and photoluminescence spectra, preformed in the region between 250 and 350 nm, suggest a strong interaction among melamine and Terbium ions. In particular, a remarkable improvement of 5D4→ FJ Rare Earth emission (at about 542 nm) of about 102 fold was observed and attributed to an efficient organic-Tb energy transfer. The energy transfer mechanism was studied by the use of time resolved photoluminescence measurements. The melamine lifetime undergoes to a significant decrease when adsorbed to oxide surfaces and it was connected to a sensitization mechanism. The detailed analysis of time decay profile of Terbium radiative recombination shows a variation of double exponential law toward a single exponential one. Its correlation with surface defects and non-radiative recombination was thus discussed.

Luminescence enhancement by energy transfer in melamine-Y2O3:Tb3+ nanohybrids / Stagi, L.; Chiriu, D.; Ardu, A.; Cannas, C.; Carbonaro, C. M.; Ricci, P. C.. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - 118:12(2015), p. 125502. [10.1063/1.4931678]

Luminescence enhancement by energy transfer in melamine-Y2O3:Tb3+ nanohybrids

Stagi L.
Membro del Collaboration Group
;
Cannas C.;
2015

Abstract

The phenomenon of luminescence enhancement was studied in melamine-Y2O3:Tb hybrids. Terbium doped Y2O3 mesoporous nanowires were synthesized by hydrothermal method. X-ray diffraction patterns and Raman scattering spectra testified the realization of a cubic crystal phase. Organic-inorganic melamine-Y2O3:Tb3+ hybrid system was successfully obtained by vapour deposition method. Vibration Raman active modes of the organic counterpart were investigated in order to verify the achievement of hybrid system. Photoluminescence excitation and photoluminescence spectra, preformed in the region between 250 and 350 nm, suggest a strong interaction among melamine and Terbium ions. In particular, a remarkable improvement of 5D4→ FJ Rare Earth emission (at about 542 nm) of about 102 fold was observed and attributed to an efficient organic-Tb energy transfer. The energy transfer mechanism was studied by the use of time resolved photoluminescence measurements. The melamine lifetime undergoes to a significant decrease when adsorbed to oxide surfaces and it was connected to a sensitization mechanism. The detailed analysis of time decay profile of Terbium radiative recombination shows a variation of double exponential law toward a single exponential one. Its correlation with surface defects and non-radiative recombination was thus discussed.
Luminescence enhancement by energy transfer in melamine-Y2O3:Tb3+ nanohybrids / Stagi, L.; Chiriu, D.; Ardu, A.; Cannas, C.; Carbonaro, C. M.; Ricci, P. C.. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - 118:12(2015), p. 125502. [10.1063/1.4931678]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11388/247843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact