In livestock, in vitro embryo production systems can be developed and sustained thanks to the large number of ovaries and oocytes that can be easily obtained from a slaughterhouse. Adult ovaries always bear several antral follicles, while in prepubertal donors the maximal numbers of oocytes are available at 4 weeks of age, when ovaries bear peak numbers of antral follicles. Thus, 4 weeks old lambs are considered good donors, even if the developmental competence of prepubertal oocytes is lower compared to their adult counterpart. Basic research and commercial applications would be boosted by the possibility of successfully cryopreserving vitrified oocytes obtained from both adult and prepubertal donors. The vitrification of oocyte collected from prepubertal donors would also allow shortening the generation interval and thus increasing the genetic gain in breeding programs. However, the loss of developmental potential after cryopreservation makes mammalian oocytes probably one of the most difficult cell types to cryopreserve. Among the available cryopreservation techniques, vitrification is widely applied to animal and human oocytes. Despite recent advancements in the technique, exposures to high concentrations of cryoprotective agents as well as chilling injury and osmotic stress still induce several structural and molecular alterations and reduce the developmental potential of mammalian oocytes. Here, we describe a protocol for the vitrification of sheep oocytes collected from juvenile and adult donors and matured in vitro prior to cryopreservation. The protocol includes all the procedures from oocyte in vitro maturation to vitrification, warming and post-warming incubation period. Oocytes vitrified at the MII stage can indeed be fertilized following warming, but they need extra time prior to fertilization to restore damage due to cryopreservation procedures and to increase their developmental potential. Thus, post-warming culture conditions and timing are crucial steps for the restoration of oocyte developmental potential, especially when oocyte are collected from juvenile donors.
Vitrification of In Vitro Matured Oocytes Collected from Adult and Prepubertal Ovaries in Sheep / Succu, Sara; Serra, Elisa; Gadau, Sergio; Varcasia, Antonio; Berlinguer, Fiammetta. - In: JOURNAL OF VISUALIZED EXPERIMENTS. - ISSN 1940-087X. - 173(2021). [10.3791/62272]
Vitrification of In Vitro Matured Oocytes Collected from Adult and Prepubertal Ovaries in Sheep
Succu, Sara;Serra, Elisa;Gadau, Sergio;Varcasia, Antonio;Berlinguer, Fiammetta
2021-01-01
Abstract
In livestock, in vitro embryo production systems can be developed and sustained thanks to the large number of ovaries and oocytes that can be easily obtained from a slaughterhouse. Adult ovaries always bear several antral follicles, while in prepubertal donors the maximal numbers of oocytes are available at 4 weeks of age, when ovaries bear peak numbers of antral follicles. Thus, 4 weeks old lambs are considered good donors, even if the developmental competence of prepubertal oocytes is lower compared to their adult counterpart. Basic research and commercial applications would be boosted by the possibility of successfully cryopreserving vitrified oocytes obtained from both adult and prepubertal donors. The vitrification of oocyte collected from prepubertal donors would also allow shortening the generation interval and thus increasing the genetic gain in breeding programs. However, the loss of developmental potential after cryopreservation makes mammalian oocytes probably one of the most difficult cell types to cryopreserve. Among the available cryopreservation techniques, vitrification is widely applied to animal and human oocytes. Despite recent advancements in the technique, exposures to high concentrations of cryoprotective agents as well as chilling injury and osmotic stress still induce several structural and molecular alterations and reduce the developmental potential of mammalian oocytes. Here, we describe a protocol for the vitrification of sheep oocytes collected from juvenile and adult donors and matured in vitro prior to cryopreservation. The protocol includes all the procedures from oocyte in vitro maturation to vitrification, warming and post-warming incubation period. Oocytes vitrified at the MII stage can indeed be fertilized following warming, but they need extra time prior to fertilization to restore damage due to cryopreservation procedures and to increase their developmental potential. Thus, post-warming culture conditions and timing are crucial steps for the restoration of oocyte developmental potential, especially when oocyte are collected from juvenile donors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.