Sulfite is widely used as a preservative in foods and beverages for its antimicrobial and antioxidant activities, particularly in winemaking where SO2 is frequently added. Thus, sulfite resistance mechanisms have been extensively studied in the fermenting yeast Saccharomyces cerevisiae. Nevertheless, in recent years, a negative perception has developed towards sulfites in wine, because of human health and environmental concerns. Increasing consumer demand for wines with low SO2 content is pushing the winemaking sector to develop new practices in order to reduce sulfite content in wine, including the use of physical and chemical alternatives to SO2, and the exploitation of microbial resources to the same purpose. For this reason, the formation of sulfur-containing compounds by wine yeast has become a crucial point of research during the last decades. In this context, the aim of this review is to examine the main mechanisms weaponized by Saccharomyces cerevisiae for coping with sulfite, with a particular emphasis on the production of sulfite and glutathione, sulfite detoxification through membrane efflux (together with the genetic determinants thereof), and production of SO2-binding compounds.
Yeast Metabolism and Its Exploitation in Emerging Winemaking Trends: From Sulfite Tolerance to Sulfite Reduction / Zara, Giacomo; Nardi, Tiziana. - In: FERMENTATION. - ISSN 2311-5637. - 7:2(2021), p. 57. [10.3390/fermentation7020057]
Yeast Metabolism and Its Exploitation in Emerging Winemaking Trends: From Sulfite Tolerance to Sulfite Reduction
Zara, Giacomo
;
2021-01-01
Abstract
Sulfite is widely used as a preservative in foods and beverages for its antimicrobial and antioxidant activities, particularly in winemaking where SO2 is frequently added. Thus, sulfite resistance mechanisms have been extensively studied in the fermenting yeast Saccharomyces cerevisiae. Nevertheless, in recent years, a negative perception has developed towards sulfites in wine, because of human health and environmental concerns. Increasing consumer demand for wines with low SO2 content is pushing the winemaking sector to develop new practices in order to reduce sulfite content in wine, including the use of physical and chemical alternatives to SO2, and the exploitation of microbial resources to the same purpose. For this reason, the formation of sulfur-containing compounds by wine yeast has become a crucial point of research during the last decades. In this context, the aim of this review is to examine the main mechanisms weaponized by Saccharomyces cerevisiae for coping with sulfite, with a particular emphasis on the production of sulfite and glutathione, sulfite detoxification through membrane efflux (together with the genetic determinants thereof), and production of SO2-binding compounds.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.