Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life. We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries. The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect. Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity.

Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis / Fiorito, G.; Mccrory, C.; Robinson, O.; Carmeli, C.; Rosales, C. O.; Zhang, Y.; Colicino, E.; Dugue, P. -A.; Artaud, F.; Mckay, G. J.; Jeong, A.; Mishra, P. P.; Nost, T. H.; Krogh, V.; Panico, S.; Sacerdote, C.; Tumino, R.; Palli, D.; Matullo, G.; Guarrera, S.; Gandini, M.; Bochud, M.; Dermitzakis, E.; Muka, T.; Schwartz, J.; Vokonas, P. S.; Just, A.; Hodge, A. M.; Giles, G. G.; Southey, M. C.; Hurme, M. A.; Young, I.; Mcknight, A. J.; Kunze, S.; Waldenberger, M.; Peters, A.; Schwettmann, L.; Lund, E.; Baccarelli, A.; Milne, R. L.; Kenny, R. A.; Elbaz, A.; Brenner, H.; Kee, F.; Voortman, T.; Probst-Hensch, N.; Lehtimaki, T.; Elliot, P.; Stringhini, S.; Vineis, P.; Polidoro, S.; Alberts, J.; Alenius, H.; Avendano, M.; Baltar, V.; Bartley, M.; Barros, H.; Bellone, M.; Berger, E.; Blane, D.; Candiani, G.; Carra, L.; Castagne, R.; Chadeau-Hyam, M.; Cima, S.; Clavel-Chapelon, F.; Costa, G.; Courtin, E.; Delpierre, C.; D'Errico, A.; Dermitzakis, M.; Elovainio, M.; Elliott, P.; Fagherazzi, G.; Fraga, S.; Gares, V.; Gerbouin-Rerolle, P.; Giles, G.; Goldberg, M.; Greco, D.; Guessous, I.; Haba-Rubio, J.; Heinzer, R.; Hodge, A.; Joost, S.; Karimi, M.; Kelly-Irving, M.; Kahonen, M.; Karisola, P.; Khenissi, L.; Kivimaki, M.; Laine, J.; Lang, T.; Laurent, A.; Layte, R.; Lepage, B.; Lorsch, D.; Macguire, F.; Machell, G.; Mackenbach, J.; Marmot, M.; de Mestral, C.; Miller, C.; Milne, R.; Muennig, P.; Nusselder, W.; Petrovic, D.; Pilapil, L.; Preisig, M.; Pulkki-Raback, L.; Raitakari, O.; Ribeiro, A. I.; Ricceri, F.; Recalcati, P.; Reinhard, E.; Valverde, J. R.; Saba, S.; Santegoets, F.; Satolli, R.; Simmons, T.; Severi, G.; Shipley, M. J.; Tabak, A.; Terhi, V.; Tieulent, J.; Vaccarella, S.; Vigna-Taglianti, F.; Vollenweider, P.; Vuilleumier, N.; Zins, M.. - In: AGING. - ISSN 1945-4589. - 11:7(2019), pp. 2045-2070. [10.18632/aging.101900]

Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis

Fiorito G.;Gandini M.;
2019-01-01

Abstract

Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life. We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries. The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect. Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity.
2019
Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis / Fiorito, G.; Mccrory, C.; Robinson, O.; Carmeli, C.; Rosales, C. O.; Zhang, Y.; Colicino, E.; Dugue, P. -A.; Artaud, F.; Mckay, G. J.; Jeong, A.; Mishra, P. P.; Nost, T. H.; Krogh, V.; Panico, S.; Sacerdote, C.; Tumino, R.; Palli, D.; Matullo, G.; Guarrera, S.; Gandini, M.; Bochud, M.; Dermitzakis, E.; Muka, T.; Schwartz, J.; Vokonas, P. S.; Just, A.; Hodge, A. M.; Giles, G. G.; Southey, M. C.; Hurme, M. A.; Young, I.; Mcknight, A. J.; Kunze, S.; Waldenberger, M.; Peters, A.; Schwettmann, L.; Lund, E.; Baccarelli, A.; Milne, R. L.; Kenny, R. A.; Elbaz, A.; Brenner, H.; Kee, F.; Voortman, T.; Probst-Hensch, N.; Lehtimaki, T.; Elliot, P.; Stringhini, S.; Vineis, P.; Polidoro, S.; Alberts, J.; Alenius, H.; Avendano, M.; Baltar, V.; Bartley, M.; Barros, H.; Bellone, M.; Berger, E.; Blane, D.; Candiani, G.; Carra, L.; Castagne, R.; Chadeau-Hyam, M.; Cima, S.; Clavel-Chapelon, F.; Costa, G.; Courtin, E.; Delpierre, C.; D'Errico, A.; Dermitzakis, M.; Elovainio, M.; Elliott, P.; Fagherazzi, G.; Fraga, S.; Gares, V.; Gerbouin-Rerolle, P.; Giles, G.; Goldberg, M.; Greco, D.; Guessous, I.; Haba-Rubio, J.; Heinzer, R.; Hodge, A.; Joost, S.; Karimi, M.; Kelly-Irving, M.; Kahonen, M.; Karisola, P.; Khenissi, L.; Kivimaki, M.; Laine, J.; Lang, T.; Laurent, A.; Layte, R.; Lepage, B.; Lorsch, D.; Macguire, F.; Machell, G.; Mackenbach, J.; Marmot, M.; de Mestral, C.; Miller, C.; Milne, R.; Muennig, P.; Nusselder, W.; Petrovic, D.; Pilapil, L.; Preisig, M.; Pulkki-Raback, L.; Raitakari, O.; Ribeiro, A. I.; Ricceri, F.; Recalcati, P.; Reinhard, E.; Valverde, J. R.; Saba, S.; Santegoets, F.; Satolli, R.; Simmons, T.; Severi, G.; Shipley, M. J.; Tabak, A.; Terhi, V.; Tieulent, J.; Vaccarella, S.; Vigna-Taglianti, F.; Vollenweider, P.; Vuilleumier, N.; Zins, M.. - In: AGING. - ISSN 1945-4589. - 11:7(2019), pp. 2045-2070. [10.18632/aging.101900]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/245431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 128
social impact