By using a characterization of the Morse index and the degeneracy in terms of a singular one dimensional eigenvalue problem given in Amadori A L and Gladiali F (2018 arXiv:1805.04321), we give a lower bound for the Morse index of radial solutions to Hénon type problems-&Deltau= xα f(u)inΩ, u=0 onΩ, is a bounded radially symmetric domain of RN (N 2), α > 0 and f is a real function. From this estimate we get that the Morse index of nodal radial solutions to this problem goes to ∞ as α → ∞. Concerning the real Hénon problem, f(u) = |u|p-1 u, we prove radial nondegeneracy, we show that the radial Morse index is equal to the number of nodal zones and we get that a least energy nodal solution is not radial.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | On a singular eigenvalue problem and its applications in computing the Morse index of solutions to semilinear PDE's: II |
Autori: | GLADIALI, Francesca Maria (Corresponding) |
Data di pubblicazione: | 2020 |
Rivista: | |
Handle: | http://hdl.handle.net/11388/240786 |
Appare nelle tipologie: | 1.1 Articolo in rivista |