The safest way to store hydrogen is in solid form, physically entrapped in molecular form in highly porous materials, or chemically bound in atomic form in hydrides. Among the different families of these compounds, alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997, when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review, the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li, Na, K, Ca, Mg, Y, Eu, and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performance.

Solid state hydrogen storage in alanates and alanate-based compounds: A review / Milanese, Chiara; Garroni, Sebastiano; Gennari, Fabiana; Marini, Amedeo; Klassen, Thomas; Dornheim, Martin; Pistidda, Claudio. - In: METALS. - ISSN 2075-4701. - 8:8(2018), p. 567. [10.3390/met8080567]

Solid state hydrogen storage in alanates and alanate-based compounds: A review

Milanese, Chiara
;
Garroni, Sebastiano;
2018-01-01

Abstract

The safest way to store hydrogen is in solid form, physically entrapped in molecular form in highly porous materials, or chemically bound in atomic form in hydrides. Among the different families of these compounds, alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997, when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review, the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li, Na, K, Ca, Mg, Y, Eu, and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performance.
2018
Solid state hydrogen storage in alanates and alanate-based compounds: A review / Milanese, Chiara; Garroni, Sebastiano; Gennari, Fabiana; Marini, Amedeo; Klassen, Thomas; Dornheim, Martin; Pistidda, Claudio. - In: METALS. - ISSN 2075-4701. - 8:8(2018), p. 567. [10.3390/met8080567]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/220308
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? ND
social impact