For the natural two-parameter filtration (Formula presented.) on the boundary of a triangle building, we define a maximal function and a square function and show their boundedness on (Formula presented.) for (Formula presented.). At the end, we consider (Formula presented.) boundedness of martingale transforms. If the building is of (Formula presented.), then (Formula presented.) can be identified with p-adic Heisenberg group.

Littlewood–Paley Theory for Triangle Buildings / Steger, Tim Joshua; Trojan, Bartosz. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - (2017), pp. 1-29. [10.1007/s12220-017-9856-6]

Littlewood–Paley Theory for Triangle Buildings

STEGER, Tim Joshua;
2017-01-01

Abstract

For the natural two-parameter filtration (Formula presented.) on the boundary of a triangle building, we define a maximal function and a square function and show their boundedness on (Formula presented.) for (Formula presented.). At the end, we consider (Formula presented.) boundedness of martingale transforms. If the building is of (Formula presented.), then (Formula presented.) can be identified with p-adic Heisenberg group.
2017
Littlewood–Paley Theory for Triangle Buildings / Steger, Tim Joshua; Trojan, Bartosz. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - (2017), pp. 1-29. [10.1007/s12220-017-9856-6]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/182263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact