Abstract: A new Cu(II) dinuclear complex, Cu2L2 (1) was afforded employing the potentially pentatentate Schiff base precursor H2L, a refluxed product of o-vanillin and diethylenetriamine in methanol. Complex 1 was systematically characterized by FTIR, UV–Vis, emission and EPR spectrometry. The single crystal X-ray diffraction analysis of 1 reveals that the copper atom exhibits a distorted square planar geometry, comprising two pairs of phenolato-O and imine-N donors from two different H2L ligands. The temperature dependent magnetic interpretation agrees with the existence of weak antiferromagnetic interactions between the bridging dinuclear Cu(II) ions. A considerable body of experimental evidence has been accumulated to elucidate the magneto-structural relationship in this dinuclear Cu(II) complex by DFT computation. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy on M. tuberculosis H37Ra (ATCC 25177) and M. tuberculosis H37Rv (ATCC 25618) strains. The practical applicability of the ligand and complex 1 has been examined in living cells (African Monkey Vero Cells). The MTT assay proves the non-toxicity of the probe up to 100 mg mL−1. Graphical abstract: A new homometallic dinuclear Cu(II) complex is afforded with a tetradentate Schiff base precursor. EPR interpretation and temperature dependent magnetic studies show that complex 1 has weak antiferromagnetic coupling and DFT computation is governed to explain the magneto-structural correlation.[Figure not available: see fulltext.]

EPR interpretation, magnetism and biological study of a Cu(II) dinuclear complex assisted by a schiff base precursor / Das, Kuheli; Patra, Chiranjit; Sen, Chandana; Datta, Amitabha; Massera, Chiara; Garribba, Eugenio; El Fallah, Mohamed Salah; Beyene, Belete B.; Hung, Chen Hsiung; Sinha, Chittaranjan; Askun, Tulin; Celikboyun, Pinar; Escudero, Daniel; Frontera, Antonio. - In: JBIC. - ISSN 0949-8257. - (2017), pp. 1-15. [10.1007/s00775-016-1428-x]

EPR interpretation, magnetism and biological study of a Cu(II) dinuclear complex assisted by a schiff base precursor

GARRIBBA, Eugenio;
2017-01-01

Abstract

Abstract: A new Cu(II) dinuclear complex, Cu2L2 (1) was afforded employing the potentially pentatentate Schiff base precursor H2L, a refluxed product of o-vanillin and diethylenetriamine in methanol. Complex 1 was systematically characterized by FTIR, UV–Vis, emission and EPR spectrometry. The single crystal X-ray diffraction analysis of 1 reveals that the copper atom exhibits a distorted square planar geometry, comprising two pairs of phenolato-O and imine-N donors from two different H2L ligands. The temperature dependent magnetic interpretation agrees with the existence of weak antiferromagnetic interactions between the bridging dinuclear Cu(II) ions. A considerable body of experimental evidence has been accumulated to elucidate the magneto-structural relationship in this dinuclear Cu(II) complex by DFT computation. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy on M. tuberculosis H37Ra (ATCC 25177) and M. tuberculosis H37Rv (ATCC 25618) strains. The practical applicability of the ligand and complex 1 has been examined in living cells (African Monkey Vero Cells). The MTT assay proves the non-toxicity of the probe up to 100 mg mL−1. Graphical abstract: A new homometallic dinuclear Cu(II) complex is afforded with a tetradentate Schiff base precursor. EPR interpretation and temperature dependent magnetic studies show that complex 1 has weak antiferromagnetic coupling and DFT computation is governed to explain the magneto-structural correlation.[Figure not available: see fulltext.]
2017
EPR interpretation, magnetism and biological study of a Cu(II) dinuclear complex assisted by a schiff base precursor / Das, Kuheli; Patra, Chiranjit; Sen, Chandana; Datta, Amitabha; Massera, Chiara; Garribba, Eugenio; El Fallah, Mohamed Salah; Beyene, Belete B.; Hung, Chen Hsiung; Sinha, Chittaranjan; Askun, Tulin; Celikboyun, Pinar; Escudero, Daniel; Frontera, Antonio. - In: JBIC. - ISSN 0949-8257. - (2017), pp. 1-15. [10.1007/s00775-016-1428-x]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/175741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact