Previous studies on mouse models report that cecal and fecal microbial communities may differ in the taxonomic structure, but little is known about their respective functional activities. Here, we employed a metaproteogenomic approach, including 16S rRNA gene sequencing, shotgun metagenomics and shotgun metaproteomics, to analyze the microbiota of paired mouse cecal contents (CCs) and feces, with the aim of identifying changes in taxon-specific functions. As a result, Gram-positive anaerobes were observed as considerably higher in CCs, while several key enzymes, involved in oxalate degradation, glutamate/glutamine metabolism, and redox homeostasis, and most actively expressed by Bacteroidetes, were clearly more represented in feces. On the whole, taxon and function abundance appeared to vary consistently with environmental changes expected to occur throughout the transit from the cecum to outside the intestine, especially when considering metaproteomic data. The results of this study indicate that functional and metabolic differences exist between CC and stool samples, paving the way to further metaproteogenomic investigations aimed at elucidating the functional dynamics of the intestinal microbiota.

Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse / Tanca, Alessandro; Manghina, Valeria; Fraumene, Cristina; Palomba, Antonio; Abbondio, Marcello; Deligios, Massimo; Silverman, Michael; Uzzau, Sergio. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - 8:MAR(2017), p. 391. [10.3389/fmicb.2017.00391]

Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse

TANCA, ALESSANDRO;MANGHINA, Valeria;PALOMBA, ANTONIO;ABBONDIO, Marcello;DELIGIOS, Massimo;UZZAU, Sergio
2017-01-01

Abstract

Previous studies on mouse models report that cecal and fecal microbial communities may differ in the taxonomic structure, but little is known about their respective functional activities. Here, we employed a metaproteogenomic approach, including 16S rRNA gene sequencing, shotgun metagenomics and shotgun metaproteomics, to analyze the microbiota of paired mouse cecal contents (CCs) and feces, with the aim of identifying changes in taxon-specific functions. As a result, Gram-positive anaerobes were observed as considerably higher in CCs, while several key enzymes, involved in oxalate degradation, glutamate/glutamine metabolism, and redox homeostasis, and most actively expressed by Bacteroidetes, were clearly more represented in feces. On the whole, taxon and function abundance appeared to vary consistently with environmental changes expected to occur throughout the transit from the cecum to outside the intestine, especially when considering metaproteomic data. The results of this study indicate that functional and metabolic differences exist between CC and stool samples, paving the way to further metaproteogenomic investigations aimed at elucidating the functional dynamics of the intestinal microbiota.
2017
Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse / Tanca, Alessandro; Manghina, Valeria; Fraumene, Cristina; Palomba, Antonio; Abbondio, Marcello; Deligios, Massimo; Silverman, Michael; Uzzau, Sergio. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - 8:MAR(2017), p. 391. [10.3389/fmicb.2017.00391]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/175176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 63
social impact