Hyaluronic acid (HA) plays a fundamental role in cell polarity and hydrodynamic processes, affording significant modulation of proliferation, migration, morphogenesis and senescence, with deep implication in the ability of stem cells to execute their differentiating plans. The Radio Electric Asymmetric Conveyer (REAC) technology is aimed to optimize the ions fluxes at the molecular level in order to optimize the molecular mechanisms driving cellular asymmetry and polarization. Here, we show that treatment with 4-methylumbelliferone (4-MU), a potent repressor of type 2 HA synthase and endogenous HA synthesis, dramatically antagonized the ability of REAC to recover the gene and protein expression of Bmi1, Oct4, Sox2, and Nanog in ADhMSCs that had been made senescent by prolonged culture up to the 30th passage. In senescent ADhMSCs, 4-MU also counteracted the REAC ability to rescue the gene expression of TERT, and the associated resumption of telomerase activity. Hence, the anti-senescence action of REAC is largely dependent upon the availability of endogenous HA synthesis. Endogenous HA and HA-binding proteins with REAC technology create an interesting network that acts on the modulation of cell polarity and intracellular environment. This suggests that REAC technology is effective on an intracellular niche level of stem cell regulation.

REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence / Maioli, Margherita; Rinaldi, Salvatore; Pigliaru, Gianfranco; Santaniello, Sara; Basoli, Valentina; Castagna, Alessandro; Fontani, Vania; Ventura, Carlo. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 6:1(2016), p. 28682. [10.1038/srep28682]

REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence

MAIOLI, Margherita;
2016-01-01

Abstract

Hyaluronic acid (HA) plays a fundamental role in cell polarity and hydrodynamic processes, affording significant modulation of proliferation, migration, morphogenesis and senescence, with deep implication in the ability of stem cells to execute their differentiating plans. The Radio Electric Asymmetric Conveyer (REAC) technology is aimed to optimize the ions fluxes at the molecular level in order to optimize the molecular mechanisms driving cellular asymmetry and polarization. Here, we show that treatment with 4-methylumbelliferone (4-MU), a potent repressor of type 2 HA synthase and endogenous HA synthesis, dramatically antagonized the ability of REAC to recover the gene and protein expression of Bmi1, Oct4, Sox2, and Nanog in ADhMSCs that had been made senescent by prolonged culture up to the 30th passage. In senescent ADhMSCs, 4-MU also counteracted the REAC ability to rescue the gene expression of TERT, and the associated resumption of telomerase activity. Hence, the anti-senescence action of REAC is largely dependent upon the availability of endogenous HA synthesis. Endogenous HA and HA-binding proteins with REAC technology create an interesting network that acts on the modulation of cell polarity and intracellular environment. This suggests that REAC technology is effective on an intracellular niche level of stem cell regulation.
2016
REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence / Maioli, Margherita; Rinaldi, Salvatore; Pigliaru, Gianfranco; Santaniello, Sara; Basoli, Valentina; Castagna, Alessandro; Fontani, Vania; Ventura, Carlo. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 6:1(2016), p. 28682. [10.1038/srep28682]
File in questo prodotto:
File Dimensione Formato  
srep28682.pdf

accesso aperto

Tipologia: Versione editoriale (versione finale pubblicata)
Licenza: Creative commons
Dimensione 951.9 kB
Formato Adobe PDF
951.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/174582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 38
social impact