Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis and limited therapeutic options. Therefore, there is an urgent need to identify new, safe, and targeted therapeutics for effective treatment of late as well as early stage disease. Plectin-1 (Plec-1) was recently identified as specific biomarker for detecting PDAC at an early stage. We envisioned that multivalent attachment of nanocarriers incorporating certain drugs to Plec-1-derived peptide would increase specific binding affinity and impart high specificity for PDAC cells. Previously, we discovered a novel class of compounds (e.g., quinazolinediones, QDs) that exert their cytotoxic effects by modulating ROS-mediated cell signaling. Herein, we prepared novel QD242-encapsulated polymeric nanoparticles (NPs) functionalized with a peptide to selectively bind to Plec-1. Similarly, we prepared QD-based NPs densely decorated with an isatoic anhydride derivative. Furthermore, we evaluated their impact on ligand binding and antiproliferative activity against PDAC cells. The targeted NPs were more potent than the nontargeted constructs in PDAC cells warranting further development.
Targeted Nanoparticles for the Delivery of Novel Bioactive Molecules to Pancreatic Cancer Cells / Sanna, Vanna Annunziata; Nurra, Salvatore; Pala, Nicolino; Marceddu, Salvatore; Pathania, Divya; Neamati, Nouri; Sechi, Mario. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - 59:11(2016), pp. 5209-5220. [10.1021/acs.jmedchem.5b01571]
Targeted Nanoparticles for the Delivery of Novel Bioactive Molecules to Pancreatic Cancer Cells
SANNA, Vanna Annunziata;SECHI, Mario
2016-01-01
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis and limited therapeutic options. Therefore, there is an urgent need to identify new, safe, and targeted therapeutics for effective treatment of late as well as early stage disease. Plectin-1 (Plec-1) was recently identified as specific biomarker for detecting PDAC at an early stage. We envisioned that multivalent attachment of nanocarriers incorporating certain drugs to Plec-1-derived peptide would increase specific binding affinity and impart high specificity for PDAC cells. Previously, we discovered a novel class of compounds (e.g., quinazolinediones, QDs) that exert their cytotoxic effects by modulating ROS-mediated cell signaling. Herein, we prepared novel QD242-encapsulated polymeric nanoparticles (NPs) functionalized with a peptide to selectively bind to Plec-1. Similarly, we prepared QD-based NPs densely decorated with an isatoic anhydride derivative. Furthermore, we evaluated their impact on ligand binding and antiproliferative activity against PDAC cells. The targeted NPs were more potent than the nontargeted constructs in PDAC cells warranting further development.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.